

USB Explorer 280 Generator

User Manual

Version 1.3

November 19, 2009

2 of 79

G
en

er
at

o
r

U
se

r
G

u
id

e Copyright, Confidentiality and Disclaimer Statements.

While the information in this publication is believed to be accurate, Ellisys makes no warranty of

any kind to this material including, but not limited to, the implied warranties of merchantability

and fitness for a particular purpose. Ellisys shall not be liable for any errors contained herein, or

for incidental or consequential damages in connection with the furnishing, performance or use

of this material.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in

any form or by any means, photocopying, recording or otherwise, without prior written consent

of Ellisys. No third party intellectual property right liability is assumed with respect to the use of

the information contained herein. Ellisys assumes no responsibility for errors or omissions

contained in this book. This publication and features described herein are subject to change

without notice.

Copyright (C) Ellisys 2009. All rights reserved.

All products or services mentioned in this manual are covered by trademarks, service marks, or

product names as designated by the companies who market those products.

This manual is populated throughout with screens captured from a specific version of Ellisys

Protocol Analyzer software. All the information contained in the screens are samples and serve

as instructional purposes only.

Document Revision History

Date Revision Changes

July 1, 2009 1.0 Initial release.

Aug. 12, 2009 1.1 Changed Lane to Port in all instructions.

Nov. 5, 2009 1.2 Added new instructions and special registers.

Nov. 19, 2009 1.3 Added description of ref.

Ellisys Contact Details

Ellisys Phone: +41 22 777 77 89

Chemin du Grand-Puits 38 Fax: +41 22 777 77 90

CH-1217 Meyrin Geneva Email: HTUinfo@ellisys.com UTH

Switzerland Web: HTUwww.ellisys.com UTH

U
S
B
 E

xp
lo

re
r

2
8
0

Conditions of Use and
Limited Warranty Terms

Limitations

 These conditions and terms are deemed to be accepted by the customer at

the time the product is purchased, leased, lent or used, whether or not

acknowledged in writing.

Conditions of Use

The customer is only authorized to use the product for its own activities,

whether professional or private. Thus, the customer is, in particular,

forbidden to resell, lease or lend the product to any third party. In addition,

the customer has, in particular, no right to disassembly, modify, copy,

reverse engineer, create derivative works from or otherwise reduce or alter

the product. The product may also not be used in any improper way.

Limited Warranty Coverage

Ellisys warrants to the original customer of its products that its products are

free from defects in material and workmanship for the warranty period.

Subject to the conditions and limitations set forth below, Ellisys will, at its

option, either repair or replace any part of its products that prove defective

by reason of improper workmanship or materials. Repaired parts or

replacement products will be provided by Ellisys on an exchange basis, and

will be either new or refurbished to be functionally equivalent to new. If

Ellisys is unable to repair or replace the product, it will refund the current

value of the product at the time the warranty claim is made. In no event

shall Ellisys' liability exceed the original purchase price of product.

Excluded Products and Problems

This limited warranty does not cover any damage to this product that results

from improper installation, accident, abuse, misuse, natural disaster,

insufficient or excessive electrical supply, abnormal mechanical or

environmental conditions, or any unauthorized disassembly, repair, or

modification. This limited warranty also does not apply to any product on

which the original identification information has been altered, obliterated or

removed, has not been handled or packaged correctly, or has been sold as

second-hand. This limited warranty only applies to the original customer of

the product for so long as the original customer owns the product. This

limited warranty is non-transferable.

This limited warranty covers only repair, replacement or refund for defective

Ellisys products, as provided above. Ellisys is not liable for, and does not

cover under warranty, any loss of data or any costs associated with

determining the source of system problems or removing, servicing or

installing Ellisys products.

Obtaining Warranty Service

To obtain warranty service, you may return a defective product to the

authorized Ellisys dealer or distributor from which you purchased the Ellisys

product. Please confirm the terms of your dealer's or distributor's return

policies prior to returning the product. Typically, you must include product

identification information, including model number and serial number with a

detailed description of the problem you are experiencing. You must also

include proof of the date of original retail purchase as evidence that the

product is within the applicable warranty period.

The returned product will become the property of Ellisys. Repaired or

replacement product will be shipped at Ellisys' expense. Repaired or

replacement product will continue to be covered by this limited warranty for

the remainder of the original warranty or 90 days, whichever is longer.

THE FOREGOING IS THE COMPLETE WARRANTY FOR ELLISYS PRODUCTS

AND SUPERSEDES ALL OTHER WARRANTIES AND REPRESENTATIONS,

WHETHER ORAL OR WRITTEN. EXCEPT AS EXPRESSLY SET FORTH ABOVE,

NO OTHER WARRANTIES ARE MADE WITH RESPECT TO ELLISYS PRODUCTS

AND ELLISYS EXPRESSLY DISCLAIMS ALL WARRANTIES NOT STATED

HEREIN, INCLUDING, TO THE EXTENT PERMITTED BY APPLICABLE LAW,

ANY WARRANTY THAT MAY EXIST UNDER NATIONAL, STATE, PROVINCIAL

OR LOCAL LAW INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED,

ARE LIMITED TO THE PERIODS OF TIME SET FORTH ABOVE. SOME STATES

OR OTHER JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED

WARRANTIES OR LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY

LASTS, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

ELLISYS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL

COMPONENTS IN LIFE SUPPORT EQUIPMENT OR FOR APPLICATIONS IN

WHICH THE FAILURE OR MALFUNCTION OF THE PRODUCTS WOULD CREATE

A SITUATION IN WHICH PERSONAL INJURY OR DEATH IS LIKELY TO

OCCUR. ELLISYS SHALL NOT BE LIABLE FOR THE DEATH OF ANY PERSON

OR ANY LOSS, INJURY OR DAMAGE TO PERSONS OR PROPERTY BY USE OF

PRODUCTS USED IN APPLICATIONS INCLUDING, BUT NOT LIMITED TO,

MILITARY OR MILITARY-RELATED EQUIPMENT, TRAFFIC CONTROL

EQUIPMENT, DISASTER PREVENTION SYSTEMS AND MEDICAL OR MEDICAL-

RELATED EQUIPMENT.

ELLISYS' TOTAL LIABILITY UNDER THIS OR ANY OTHER WARRANTY,

EXPRESS OR IMPLIED, IS LIMITED TO REPAIR, REPLACEMENT OR REFUND.

REPAIR, REPLACEMENT OR REFUND ARE THE SOLE AND EXCLUSIVE

REMEDIES FOR BREACH OF WARRANTY OR ANY OTHER LEGAL THEORY. TO

THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, ELLISYS SHALL

NOT BE LIABLE TO THE CUSTOMER OF AN ELLISYS PRODUCT FOR ANY

DAMAGES, EXPENSES, LOST DATA, LOST REVENUES, LOST SAVINGS, LOST

PROFITS, OR ANY OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES

ARISING FROM THE PURCHASE, USE OR INABILITY TO USE THE ELLISYS

PRODUCT, EVEN IF ELLISYS HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES. SOME STATES OR OTHER JURISDICTIONS DO NOT ALLOW

THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL

DAMAGES, SO THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY

TO YOU.

Severability

If any provision or any portion of any provision contained in these terms is

held to be invalid, illegal or unenforceable by a court of competent

jurisdiction, then the remaining provisions, and if a portion of any provision

is unenforceable, then the remaining portion of such provision shall,

nevertheless, remain in full force and effect. The parties undertake to

negotiate in good faith with a view to replace such invalid, illegal or

unenforceable provision or part thereof with another provision not so

invalid, illegal or unenforceable with the same or similar effect, and further

agree to be bound by the mutually agreed substitute provision.

Warranty Period

The warranty begins on the date of purchase and covers a period of two (2)

years.

Governing Law

These conditions and terms shall be governed by and construed in

accordance with the law of Switzerland.

Jurisdiction; Venue

The parties consent to the exclusive personal jurisdiction of, and venue in,

the District Court of Geneva, Switzerland.
 3 of 79

4 of 79

G
en

er
at

o
r

U
se

r
G

u
id

e Table of Contents

TU1.UT TUGenerator Overview UT ... 8

TU1.1UT TUIntroduction UT...8
TU1.2UT TUMain FeaturesUT ..8

TU2.UT TUInstalling the ApplicationUT ... 9

TU2.1UT TUSoftware PrerequisitesUT...9
TU2.2UT TUSoftware InstallationUT ... 10
TU2.3UT TUFront Panel OverviewUT .. 14
TU2.4UT TUBack Panel OverviewUT ... 16
TU2.5UT TUConnecting to the Control Computer UT .. 17

TU3.UT TUUser Interface Reference UT.. 20

TU3.1UT TUOrganizing PanesUT .. 21
TU3.2UT TUMain ToolbarUT .. 22
TU3.3UT TUMain MenuUT ... 22
TU3.4UT TUOpening a FileUT .. 24
TU3.5UT TUSaving a FileUT .. 25
TU3.6UT TUPrinting a FileUT ... 26
TU3.7UT TUEditing a ScriptUT... 27
TU3.8UT TUAdvanced Editing FeaturesUT ... 28
TU3.9UT TUSearchingUT .. 29
TU3.10UT TUWorking with BookmarksUT ... 31
TU3.11UT TUWorking with BreakpointsUT .. 32
TU3.12UT TUCompiling a ScriptUT .. 33
TU3.13UT TURunning a ScriptUT ... 34
TU3.14UT TUWorking with RegistersUT .. 36

TU4.UT TULanguage Reference UT.. 37

TU4.1UT TUCommentsUT ... 37
TU4.2UT TUInclude FilesUT .. 37
TU4.3UT TUConstants DeclarationUT ... 37
TU4.4UT TUVariables DeclarationUT... 38
TU4.5UT TUFunctions DeclarationUT .. 38
TU4.6UT TUFunction CallsUT... 39
TU4.7UT TUEnumerations DeclarationsUT... 40
TU4.8UT TUNamespace DeclarationsUT .. 41
TU4.9UT TUInline bytesUT ... 41

 5 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

TU4.10UT TUBuffersUT.. 42
TU4.11UT TUCountersUT ... 42
TU4.12UT TUTimersUT .. 43
TU4.13UT TURef KeywordUT .. 43
TU4.14UT TUStop KeywordUT .. 44
TU4.15UT TUBreakpoint KeywordUT .. 44
TU4.16UT TUIf, If Else, and If Else If StatementsUT... 44
TU4.17UT TUSwitch StatementUT ... 45
TU4.18UT TURepeat StatementUT... 45
TU4.19UT TUWhile Statement UT... 46
TU4.20UT TUDo While StatementUT .. 46
TU4.21UT TUFor StatementUT .. 47
TU4.22UT TUMathematical ExpressionsUT .. 47
TU4.23UT TUConditional ExpressionsUT ... 49

TU5.UT TUHardware Instructions Set Reference UT 50

TU5.1UT TUIntroduction UT... 50
TU5.2UT TUConfigureGeneratorUT... 50
TU5.3UT TUConfigureLink UT... 53
TU5.4UT TUUsb30DetectRxTerminationsUT... 56
TU5.5UT TUUsb30PushRawDataUT .. 56
TU5.6UT TUUsb30PushLinkCommandUT ... 57
TU5.7UT TUUsb30PushPacketUT ... 58
TU5.8UT TUUsb30CommitDataUT.. 60
TU5.9UT TUUsb30WaitOrderedSetUT ... 61
TU5.10UT TUUsb30WaitPacketUT.. 63
TU5.11UT TUHostConfigureBusPowerSourceUT ... 64
TU5.12UT TUHostConfigureInternalVbusLevel UT ... 64
TU5.13UT TUSleepUT .. 65
TU5.14UT TUStartCountdownUT ... 66
TU5.15UT TUWaitCountdownReachedUT .. 66
TU5.16UT TUConfigureTimer UT .. 67
TU5.17UT TUStartTimer UT ... 68
TU5.18UT TUStopTimer UT ... 69
TU5.19UT TUWaitTimer UT ... 69
TU5.20UT TUCopyMemoryUT.. 70
TU5.21UT TUWaitTriggerInUT... 71
TU5.22UT TUGenerateTriggerOutUT .. 72

6 of 79

G
en

er
at

o
r

U
se

r
G

u
id

e
TU6.UT TUSpecial RegistersUT ... 73

TU6.1UT TUUsb30NextTxHeaderSeqNumUT .. 73
TU6.2UT TUUsb30LastRxPacketTypeUT .. 73
TU6.3UT TUUsb30LastRxPacketSubTypeUT ... 74
TU6.4UT TUUsb30LastRxPacketDevAddrUT ... 74
TU6.5UT TUUsb30LastRxPacketEpNumUT ... 75
TU6.6UT TUUsb30LastRxPacketNumPUT... 75
TU6.7UT TUUsb30LastRxPacketPayloadLengthUT ... 75
TU6.8UT TUUsb30LastRxPacketParamsUT... 76
TU6.9UT TUUsb30LastRxPacketErrorsUT... 76
TU6.10UT TUUsb30NextLinkGoodIndex UT .. 77
TU6.11UT TUUsb30NextLinkCreditIndex UT ... 77
TU6.12UT TUUsb30ImmediateLinkCommandUT... 78
TU6.13UT TUUsb30OrderedSetCounterTseqUT .. 78
TU6.14UT TUUsb30OrderedSetCounterTs1UT.. 79
TU6.15UT TUUsb30OrderedSetCounterTs2UT.. 79
TU6.16UT TUUsb30OrderedSetTsLinkFuncUT .. 79

 Generator Overview | 7 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

About this Manual

Typographic Conventions

Bold is used to indicate menu commands, buttons, and tabs.

Italics are used to indicate fields, pane names, window names and cross references.

Fixed width is used to indicate system file names, text typed and code snippets.

A warning symbol describes a possible critical situation and how to avoid it.

An information symbol tells you how to respond to a situation that may arise.

A tip symbol tells you information that will help you carry out a procedure.

Where to Find More Help

Go to the Ellisys website and the following pages for the latest information:

 Ellisys products page - Go to HTUwww.ellisys.com/products/ UTH for the latest product

information and documentation.

 Application notes and white papers - Go to HTUwww.ellisys.com/technology/UTH to find

up-to-date information about the technology.

 Distributors - Go to HTUwww.ellisys.com/sales/ UTH to find a list of Ellisys distributors.

 Technical support - Go to HTUwww.ellisys.com/support/UTH to send a question directly to

the Ellisys support team.

8 of 79 | Generator Overview

G
en

er
at

o
r

U
se

r
G

u
id

e 1. Generator Overview

1.1 Introduction

The Ellisys USB Explorer 280 Generator is an advanced traffic generation and emulation system

for SuperSpeed USB 3.0 and USB 2.0 protocols. The Generator verifies product and component

functionality, reliability, and performance by generating reproducible traffic patterns, timing

scenarios, and various types of errors.

The Generator contains a specialized processor designed specifically for SuperSpeed USB and

USB 2.0 protocols, allowing for very fast timing interaction with the connected Device Under

Test (DUT). The processor’s instruction set enables the user to emulate any SuperSpeed

system component, such as a host or device.

The Generator is capable of sending any sequence of packets, link commands, or symbols. The

Generator recognizes incoming traffic and can make script-based decisions on this traffic, such

as conditional branching or wait states. The Generator’s software application enables the user

to create, edit, and debug scripts. Traces previously captured by the Ellisys USB Explorer 280

Analyzer can be exported to a script and replayed by the Generator.

1.2 Main Features

The Generator includes the following major features and capabilities:

 Emulate a SuperSpeed Host or Device

 Emulate a USB 2.0 Host or Device

 Perform functional validation and stress testing of protocol stacks

 Inject errors at the physical, link, and protocol layers

 Create scripts from exported analyzer traces

 Installing the Application | 9 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

2. Installing the Application

Before installing the software application for the USB Explorer 280 Generator, please ensure the

computer system on which it will reside meets the following requirements:

 Microsoft Windows XP SP1 or later.

 Microsoft Windows Installer 3.0 or later. If the installation does not run smoothly, or if

the system indicates a version error, update your Windows installer.

 Microsoft .NET Framework version 2.0 or later.

 Intel Core, 1.5 GHz or compatible processor, or better.

 512 MB RAM or more.

 1280 x 1024 screen display resolution with 65,536 colors, or better.

 USB 2.0 EHCI Host Controller.

2.1 Software Prerequisites

The USB Explorer 280 Generator requires several software components. Ellisys recommends

that you visit the following web pages as needed, to update your versions of Microsoft .NET

Framework and Windows:

 HTUwww.microsoft.com/netUTH to download the Microsoft .NET Framework version 2.0.

 HTUwww.update.microsoft.comUTH to update your version of Windows. When using the

Windows update service it will automatically download and install the Microsoft .NET

Framework version 2.0.

See your system administrator for more information about updating Microsoft .NET Framework

and Windows.

10 of 79 | Installing the Application

G
en

er
at

o
r

U
se

r
G

u
id

e 2.2 Software Installation

1. Insert the CD-ROM that accompanies the product into the computer’s CD-ROM drive.

The Ellisys SuperSpeed USB 280 Generator Setup Wizard screen appears:

If the SuperSpeed USB 280 Generator Setup Wizard does not appear, automatically, click the

START button on your Windows toolbar, then RUN, and type d:\setup.exe (change d: to match

the drive letter designation of your CD-ROM drive as needed), then click OK.

2. Read the WARNING note and click on Next.

 Installing the Application | 11 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

The Ellisys USB Explorer 280 License Agreement screen appears:

3. Read the License Agreement carefully, and then select I Agree.

4. Click on Next.

The Select Installation Folder screen appears.

12 of 79 | Installing the Application

G
en

er
at

o
r

U
se

r
G

u
id

e 5. The default installation folder appears in the Folder field. Ellisys recommends that you use

the default folder, however if you wish to change this folder, click on Browse and navigate

to the folder required.

6. Select whether anyone or only the user currently logged on can access the software by

selecting either Everyone or Just me. Click on Next.

The Confirm Installation screen appears:

7. Click on Next to continue the installation.

 Installing the Application | 13 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

An Installation Progress screen appears:

When the software has been installed, the Installation Complete screen appears:

8. Click on Close.

The Ellisys USB Explorer 280 Generator is now installed.

14 of 79 | Installing the Application

G
en

er
at

o
r

U
se

r
G

u
id

e After installing the USB Explorer 280 Generator software, a new Hardware Wizard will appear if

your units are connected. Refer to section 2.5, Connecting to the Control Computer, for more

information about installing the USB driver.

2.3 Front Panel Overview

The front panel of the Ellisys USB Explorer 280 Generator is shown below:

When connecting USB cables UDO NOTU force the connector into the unit. The

metal part of the connector should not be inserted completely into the

connection port. Forcing the connector or inserting all of the metal part of the

connector will break the port connection and is not covered by the warranty.

Upstream Connector

The Upstream Connector is usually used in Device Emulation mode to connect the Generator to

a Host Under Test. It can also connect to a Hub Downstream Port for the same purpose.

Downstream Connector

The Downstream Connector is usually used in Host Emulation mode to connect the Generator to

a Device Under Test. It can also connect to a Hub Upstream Port for the same purpose.

Power LED

The Power LED indicates if the unit is correctly powered from the supplied 24VDC/2A power

adapter and connected to the control computer.

Constant green: Powered and connected, ready to operate.

Flashing green: Powered but not connected.

Flashing red: Connected but not powered.

Off: Not powered and not connected. The Power LED may also be off if when the

unit is in power-saving mode after the control computer has been turned off.

 Installing the Application | 15 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

Operating LED

The Operating LED indicates if the unit is presently operating or not, for example as protocol

analyzer or as traffic generator.

Constant green: Unit is in use.

Off: Unit is not in use and available.

Trigger LED

The Trigger LED indicates input and output trigger events.

Flashing green: Trigger event detected on the input.

Flashing red: Trigger event generated on the output.

Off: No trigger event.

Link LED

The Link LED indicates the status of the generator's upstream and downstream ports.

Depending on the generator's state, a port may be used or not. Here are the ports used by the

generator depending on the mode:

 Host mode: Only the Downstream port is used.

 Device mode: Only the Upstream port is used.

 Hub mode: Both Upstream and Downstream ports are used.

Off: No receiver detected.

Constant orange: Receiver detected, no SuperSpeed signaling detected.

Constant green: SuperSpeed signaling detected, receiver synchronized.

Flashing red: Link is unstable, frequent loss of synchronization.

16 of 79 | Installing the Application

G
en

er
at

o
r

U
se

r
G

u
id

e Receive LED

The Receive LED indicates if payload (Data Packets) or errors (CRC, invalid symbols) are

received on a given port.

Off: No payload or errors detected.

Flashing green: Payload detected.

Flashing red: Errors detected.

Transmit LED

The Transmit LED indicates if payload (DPP) or errors (CRC, invalid symbols) are transmitted on

a given port.

Off: No data sent.

Flashing green: Data Packet sent.

2.4 Back Panel Overview

The back panel of the Ellisys USB Explorer 280 Generator is shown below:

When connecting the USB cable UDO NOTU force the connector into the unit. The

metal part of the connector should not be inserted completely into the

connection port. Forcing the connector or inserting all of the metal part of the

connector will break the port connection and is not covered by the warranty.

Power

DC jack power input. The nearby LED illuminates constant green if a correct voltage is applied,

and illuminates constant red if the voltage is applied reversed.

Accepted Voltage Range: 12V to 24V DC.

Minimum Power: 18W

 Installing the Application | 17 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

Computer

Type B USB 2.0 connector. Attaches to control computer.

Trigger OUT

SMA connector used for sending TTL voltage level shift or pulse to external equipment.

Trigger IN

SMA connector used for accepting TTL voltage level shift or pulse from external equipment.

Auxiliary Equipment

Reserved for future extensions.

Inter-equipment

Reserved for future extensions.

2.5 Connecting to the Control Computer

The USB Explorer 280 Generator is controlled over a high-speed USB 2.0 connection by a PC

hosting the Generator application, enabling the use of any notebook or desktop computer. The

USB driver must be installed before the Generator can be used.

Although the unit can upload or download data on a full speed USB 1.1

connection, Ellisys strongly recommends that you connect it to a high speed

USB 2.0 port to obtain optimal performance. If you experience problems with

the USB Explorer 280, please ensure it is connected on a high speed USB 2.0

enabled host controller before contacting technical support.

Follow the steps below to install the USB driver:

1. Connect a USB 2.0 cable between the Type B USB receptacle Generator back panel and the

PC. If attaching the Generator for the first time, wait until Windows displays a message

indicating that a new device has been found (typically a small bubble indication at the

lower-right of the screen), then go to step 3.

2. If you want to update a previously installed device driver:

 Open the Device Manager: Start | Control Panel

 Double-Click the System icon.

 Click on the Hardware tab.

 Click on Device Manager.

 Click on Ellisys protocol analyzers.

 Right-click and select Update Driver.

18 of 79 | Installing the Application

G
en

er
at

o
r

U
se

r
G

u
id

e The Hardware Update Wizard opens:

3. Select No, not this time.

4. Click on Next.

The Found New Hardware Wizard appears:

5. Select Install the software automatically (Recommended).

6. Click on Next.

 Installing the Application | 19 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

The Please wait while the wizard installs the software window appears:

Windows now installs the driver.

7. When the installation is complete, the wizard has finished installing the software screen

appears:

8. Click on Finish.

The installation is complete.

20

G
en

er
at

o
r

U
se

r
G

u
id

e 3. User Interface Reference

The user interface of the USB Explorer 280 Generator application provides various panes,

menus, toolbars, and other visual elements.

Th

all

Menu Bar
Toolbar

Script

editor

Registers

pane

Output

pane
 of 79 | User Interface Reference

e Generator application has several default panes. Each pane displays specific information or

ows the user to interact with the software for a given task:

 Script Editor – Shows the current script. The Script Editor allows for editing the

script, setting or clearing breakpoints, and placement of bookmarks to enhance

navigation through the script.

 Output Pane – Shows messages about the script after compiling. If there is an error

in the script, the Output pane will show an error description and the error’s location

(file, line, and column).

 Register Pane – Shows the contents of variables used in the script. Refer to section

3.14, Working with Registers, for more information.

 User Interface Reference | 21 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

3.1 Organizing Panes

To open or display a pane:

1. Select View in the menu and select the desired pane.

The selected pane opens.

To close a pane:

1. Click on Close positioned at the top-right corner of the title bar of the pane.

The pane closes.

To hide a pane:

1. Click on Auto-Hide positioned at the top-right corner of the title bar.

The pane is hidden and the pane’s name now appears as a tab at the side of the screen.

To move a pane or a window:

1. Click on the title bar of the desired pane or window.

2. Depress and hold the left mouse button and drag the pane or window.

A window placer appears:

3. Keep the mouse button depressed and point to one of the following:

 Center to open a pane as a floating window in the screen.

 Top to move the pane to the top of the screen or pane group.

 Right to move the pane to the right of the screen or pane group.

 Left to move the pane to the left of the screen or pane group.

 Bottom to move the pane to the bottom of the screen or pane group.

22 of 79 | User Interface Reference

G
en

er
at

o
r

U
se

r
G

u
id

e 3.2 Main Toolbar

The table below shows the USB Explorer 280 Generator toolbar buttons and their actions:

 New document Opens a new document.

 Open document Opens a folder to open a previously saved document.

 Save document Saves a document.

 Print Opens Print Options for printing a document.

 Print Preview Opens the Print Preview window.

 Cut Cuts a text selection.

 Copy Copies a text selection.

 Paste Pastes a selection of copied or cut text.

 Undo Undoes the previous action.

 Redo Redoes the previous action.

 Find/Replace Opens the find and replace window.

 Comment Selection Comments out one or more lines.

 Uncomment Selection Uncomments one or more lines.

 Toggle Bookmark Toggles a bookmark at a selected line.

 Previous Bookmark Finds the previous bookmark.

 Next Bookmark Finds the next bookmark.

 Clear Bookmarks Clears all bookmarks.

 Compile Compiles a script.

 Run Runs a stopped or paused script.

 Break Pauses a running script.

 Stop Stops a running script.

 Restart Stops and restarts a script from the beginning.

 Step Steps from line to line in the script.

3.3 Main Menu

The table below shows the SuperSpeed USB 280 Generator main menu options and their

actions, with shortcuts shown in parentheses:

File

 New (CTRL+N) Opens a new document.

 Open (CTRL+O) Opens a folder to open a previously saved document.

 Save (CTRL+S) Saves a document.

 User Interface Reference | 23 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

 Save All Saves all documents currently open.

 Save As (CTRL+SHFT+S) Saves a file with a new name.

 Load Sample Opens sample files provided with application.

 Load Library Opens include libraries.

 Page Setup Opens Page Setup dialog allowing user to set page

margins and other parameters.

 Print Preview Opens the Print Preview window.

 Print (CTRL+P) Opens Print Options for printing a document.

 Exit Closes the application.

Edit

 Undo (Ctrl+Z) Undoes the previous action.

 Redo (Ctrl+Y) Redoes the previous action.

 Cut (Ctrl+X) Cuts a text selection.

 Copy (Ctrl+C) Copies a text selection.

 Paste (Ctrl+V) Pastes a selection of copied or cut text.

Edit | Advanced

 Mark Line Modifications Marks line modifications in the script.

 Highlight Current Line Highlights the current line in the script.

 Show Column 80 Guide Displays the column guide in the script.

 Comment Selection

(CTRL+K, CTRL+C)

Adds a comment to the currently selected line.

 Uncomment Selection

(CTRL+K, CTRL+U)

Removes the comment from the selected line.

 Make Uppercase

(CTRL+SHFT+U)

Changes selected lowercase text to uppercase.

 Make Lowercase

(CTRL+SHFT+U)

Changes selected uppercase text to lowercase.

Edit | Bookmarks

 Toggle Bookmark

(CTRL+K, CTRL+K)

Toggles a bookmark at a selected line.

 Enable Bookmark

(CTRL+K, CTRL+N)

Enables the selected bookmark.

 Previous Bookmark

(CTRL+K, CTRL+P)

Finds the previous bookmark.

 Next Bookmark

(CTRL+K, CTRL+L)

Finds the next bookmark.

 Clear Bookmarks

(CTRL+K, CTRL+H)

Clears all bookmarks.

 Insert Code Snippet

(CTRL+I)

Opens a dialog permitting insertions of pre-defined code

snippets into the script at the currently selected line.

24 of 79 | User Interface Reference

G
en

er
at

o
r

U
se

r
G

u
id

e View

 Output Window Opens or closes the Output window.

 Registers Window Opens or closes the Registers window.

Search

 Find (CTRL+F) Opens the Find window.

 Replace (CTRL+H) Opens the Replace window.

 Find Next (F3) Searches forward to find the text previously entered

into the Find window.

 Find Previous (SHFT+F3) Searches backward to find the text previously entered

into the Find window.

 Go To Line (CTRL+G) Opens the Go To Line window.

Script

 Compile (F7) Compiles a script.

 Run (F5) Runs a stopped or paused script.

 Break Pauses a script when running.

 Stop (SHFT+F5) Stops a running script.

 Restart Stops and restarts a script from the beginning.

 Step (F10) Steps from line to line in a script.

 Toggle Breakpoint (F9) Toggles a breakpoint at a selected line.

 Clear All Breakpoints

(CTRL+SHFT+F9)

Removes all breakpoints in a script.

 Select a Generator Opens the Available Generators window.

Help

 Ellisys website Opens the Ellisys website in the default browser.

 Contact support Opens a form in the default browser to contact Ellisys

technical support.

 Check for updates Checks online for the latest software version.

 About Opens the About window.

3.4 Opening a File

To open a file:

Select File |Open in the menu or click on Open Document.

 User Interface Reference | 25 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

The Open File menu appears:

1. Select the file required and click Open.

The selected file opens in the software.

3.5 Saving a File

To save a file:

1. Select File |Save in the menu or click on Save Document.

The file is saved.

To save a file with a new name:

Select File |Save As in the menu.

26 of 79 | User Interface Reference

G
en

er
at

o
r

U
se

r
G

u
id

e The Save As menu appears:

1. Navigate to the directory where the file is to be saved.

2. Enter the desired name of the file in the File name field and click on Save.

The file is saved with the modified name and the original file is not modified.

3.6 Printing a File

Use the Page Setup option, File | Page Setup, to setup how the file should be printed. This

option will depend on the printer, please see your printer’s documentation for more information.

A file can be very large therefore it is advisable to check the size of the file

before trying to print the file.

To print a file:

1. Select File |Print in the menu or click on Print.

 User Interface Reference | 27 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

The Print window appears:

2. Select the printer and printer setup if required.

3. Click on OK.

The file is printed.

3.7 Editing a Script

The SuperSpeed Explorer 280 Generator includes several specialized instructions. Example

code for these instructions can be inserted to assist in writing scripts. An example code is

called a code snippet. A full description of specialized instructions can be found in Chapter 5,

Hardware Instructions Set Reference.

To insert a code snippet:

1. Click on the point in the script where the code snippet is to be inserted.

2. Select Edit | Insert Code Snippet in the menu (or press CTRL+I).

The Code Snippet list appears:

28 of 79 | User Interface Reference

G
en

er
at

o
r

U
se

r
G

u
id

e 3. Select the desired code snippet from the list.

4. Double-click on the desired code snippet or select the desired code snippet and press

ENTER.

The selected code snippet is inserted into the script and can be modified as needed.

3.8 Advanced Editing Features

All advanced editing features for the USB Explorer 280 can be accessed by clicking Edit |

Advanced in the menu.

To mark or unmark line modifications:

1. Select Edit | Advanced | Mark Line Modifications in the menu.

All lines that have been modified are marked with a yellow highlight.

To highlight the current line:

1. Select Edit | Advanced | Highlight Current Line in the menu.

The line with the cursor is highlighted.

To display the column 80 guide:

1. Select Edit | Advanced | Show Column 80 Guide in the menu.

To comment a selection in the script:

1. Select the lines that will be commented.

2. Click on Comment Selection or select Edit | Advanced | Comment Selection in the

menu.

Comment markers are inserted before the selected lines.

To uncomment a selection in the script:

1. Select the commented lines desired to be uncommented.

2. Click on Uncomment Selection or select Edit | Advanced | Uncomment Selection in

the menu.

Comment markers are removed from the selected lines.

To change text case:

1. Select the desired text in the script.

 User Interface Reference | 29 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

2. To change lowercase to uppercase, select Edit | Advanced | Make Uppercase to change

the text’s case from lowercase to uppercase or press CTRL+SHFT+U.

or

3. To change uppercase to lowercase, select Edit | Advanced | Make Lowercase to change

the text’s case from lowercase to uppercase or press CTRL+U.

3.9 Searching

Search, find, and replace options can be accessed by clicking Search in the menu.

To search text:

Click on Find/Replace or select Search | Find in the menu or press CTRL+F.

The Find/Replace menu appears:

1. Enter the desired information in the Find what field.

or

2. Select the Use box to use Regular expressions or Wildcards.

Regular expressions or Wildcards can be selected as an option.

3. If the Use box is checked, select Regular expressions or Wildcards from the drop-down list.

The Right Arrow beside the Find what field becomes enabled.

4. Click on the Right Arrow .

30 of 79 | User Interface Reference

G
en

er
at

o
r

U
se

r
G

u
id

e If Wildcards has been selected from the Use drop-down list, a Wildcard list appears:

5. Select the Wildcard desired.

If Regular expressions has been selected from the Use drop-down list, a Regular expressions

list appears:

6. Select the Regular expression desired.

7. Select the desired Find Options check boxes.

8. Click on Find Next to find the next occurrence or click on Bookmark All to bookmark all

occurrences.

The selected search is performed.

To replace text:

1. Click on Find/Replace and then click on Quick Replace

or

Select Search | Replace in the menu

or

press CTRL+H.

 User Interface Reference | 31 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

The Find/Replace menu appears:

2. Enter the desired search text the Find what field.

3. Enter the replacement text in the Replace with field.

4. Select the desired Find options check boxes.

5. Click on Find Next to find the next occurrence or click on Replace or Replace All to

replace the next occurrence or all occurrences.

The selected replacement is performed.

3.10 Working with Bookmarks

A bookmark is a useful tool that allows for marking lines of code to assist the user in navigating

through the script.

All bookmark options can be accessed by selecting Edit | Bookmarks in the menu.

To toggle a bookmark:

1. Select a line where the bookmark is to be inserted.

Click on Toggle Bookmark

or

Select Edit | Bookmarks | Toggle Bookmark in the menu.

The bookmark is inserted beside the selected line.

To enable a bookmark:

1. Click on the line beside the bookmark.

Select Edit | Bookmarks | Enable Bookmark in the menu.

32 of 79 | User Interface Reference

G
en

er
at

o
r

U
se

r
G

u
id

e The selected bookmark is enabled.

To move to the next or previous bookmark:

1. Click on Next Bookmark

or

Select Edit | Bookmarks | Next Bookmark in the menu.

A flashing cursor appears beside the next bookmark.

Click on Previous Bookmark

or

Select Edit | Bookmarks | Previous Bookmark in the menu.

A flashing cursor appears beside the previous bookmark.

To remove all bookmarks:

1. Click on Clear Bookmarks

or

Select Edit | Bookmarks | Clear Bookmarks in the menu.

All bookmarks in the script are removed.

3.11 Working with Breakpoints

A breakpoint is a point in a program which is used to temporarily halt the execution of that

program.

To insert a breakpoint:

1. Select a line where the breakpoint is to be inserted.

2. Select Script | Toggle Breakpoint in the menu

or

Press F9.

 User Interface Reference | 33 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

A breakpoint is inserted beside the selected line.

To remove all breakpoints:

1. Select Script | Clear All Breakpoints in the menu

or

Press CTRL+SHFT+F9.

All breakpoints in the script are removed.

3.12 Compiling a Script

To compile a script:

1. Open a script file as described in section 3.4, Opening a File

or

Open a new script file and save it.

2. Click on Compile

or

Select Script| Compile in the menu.

The USB Explorer 280 compiles the script.

If the compilation is successful, a “Compilation Succeeded” message will appear in the Output

pane. If the compilation is unsuccessful, error messages will appear in the Output pane.

34 of 79 | User Interface Reference

G
en

er
at

o
r

U
se

r
G

u
id

e To find an error in a compiled script:

1. Compile a script as described above.

Compilation errors are listed in the Output pane under the Message column:

2. Double-click on the desired error message in the Output pane.

The line that contains the errors is highlighted in the main script pane.

3.13 Running a Script

To select a generator:

1. Select Script | Select a Generator in the menu.

The Available Generators menu appears:

2. Select the desired generator, and click on OK.

It is advisable to select a generator as the default generator by click the Use

this generator by default check box. This will stop the Available Generators

dialog from appearing every time the software is run.

The generator is selected.

To run a script:

1. Open a script file

or

Create a new script file and save it

 User Interface Reference | 35 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

2. Click on Run

or

Select Script | Run in the menu.

If a generator was not selected as a default generator, then the Available Generators menu

appears:

3. Select the desired generator and click OK.

The script runs using the selected generator.

To break or pause a script:

1. Run a script as described in section 3.13, Running a Script.

2. Click on Break

or

Select Script | Break in the menu.

The script is paused.

To stop a script:

1. Run a script.

2. Click on Stop

or

Select Script | Stop in the menu.

The script is stopped.

To restart a script:

1. Click on Restart

or

Select Script | Restart in the menu.

The script is restarted.

36 of 79 | User Interface Reference

G
en

er
at

o
r

U
se

r
G

u
id

e To step a script:

1. Click on Step

or

Select Script | Step in the menu

or

Press F10

The script is run command by command.

3.14 Working with Registers

This section describes the usage of registers within a script. For more information about

registers, refers to section 0,

Counters.

All registers are displayed in the Registers pane.

To select a register format:

1. Right-click on one of the registers in the Registers pane.

The Format submenu appears:

2. Click on the desired numbering format, Dec, Hex, or Bin.

The register numbering format is changed as selected and any values present are updated in

the selected format.

 Language Reference | 37 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

4. Language Reference

4.1 Comments

Single line comments are done using the T// T characters.

void Main()
{
 // This is a single line comment
 CopyMemory(Src => [0x00, 0x00], Dst => Buffer, DstOffset => 200);
}

Multi-Line comments are opened using T/* T characters, and closed using the T*/ T characters.

void Main()
{
 /* This is a multi line comment, which prevents
 the following instruction from being executed:
 CopyMemory(Src => [0x00, 0x00], Dst => Buffer, DstOffset => 200);
 */
}

4.2 Include Files

Files can be included using the Tinclude T directive.

The example below shows a script that calls an include file, which uses the macro declared

inside the file:

include "MyInclude.u30sinc"

void main()
{
 // Calls a function declared in MyInclude.u30sinc
 SendPulseAndWaitAnswer(10, 2s);
}

4.3 Constants Declaration

Constants can be declared with the Tconst T keyword.

const NormalState = StateMachine.Running;
const DefaultTimeout = 450ms;

void main()
{
 WaitForState(
 State => NormalState,
 Timeout => DefaultTimeout);
}

38 of 79 | Language Reference

G
en

er
at

o
r

U
se

r
G

u
id

e 4.4 Variables Declaration

Variables are instantiated with the Tvar T keyword. Variables can be initialized at declaration with

a value. If no initial value is specified, the variable will not be initialized.

var myVar1;
var myVar2 = 10;
var myVar3 = CounterB;
var myVar4 = myVar1 * myVar2;

Unlike with C language, there is no restriction on the location of a variable declaration.

Variables can be declared anywhere in the script. The scope of the variable depends on the

declaration location.

var myGlobalVar = 0;
void MyMacro() { myGlobalVar = 10; }

void main()
{
 var myVar = 10;

 for (var i=0; i<10; i++)
 {
 myVar += 1 << I;
 }

 Sleep (myVar);
}

4.5 Functions Declaration

Functions can be used to save typing and improve the understanding of a script. Functions

accept parameters and can optionally return a value.

Optionally, parameters can be prefixed with qualifiers such as Tin T, Tout T or Tinout T. The purpose of

these qualifiers is to ensure the user of the function will correctly pass parameters.

 Language Reference | 39 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

The example below shows a script that defines a function for sending a trigger pulse and

waiting until an answer is received.

void SendPulseAndWaitAnswer(in maxRetries, in maxTime)
{
 repeat(maxRetries)
 {
 GenerateTriggerOut(
 Mode => PulseHigh);

 WaitTriggerIn(
 Condition => RisingEdge,
 Timeout => maxTime);

 if(!TimeoutOccured)
 {
 exit;
 }
 }
}

void Main()
{
 SendPulseAndWaitAnswer(10, 2s);
 SendPulseAndWaitAnswer(100, 20ms);
 SendPulseAndWaitAnswer(10, 2s);
}

The following example shows a function returning a value based on a parameter:

var ComputePosition(index)
{
 return index * 85;
}

TimerA = ComputePosition(CounterB);

4.6 Function Calls

The parameters of functions are explicit. The syntax for specifying parameter values is Tparam

=> value T. The parameters order is thus not relevant as the parameter is fully identified by its

name. The examples below show a function with two parameters Tparam1 T and Tparam2 T; the

value 10 is assigned to Tparam1 T and the value 20 to Tparam2 T.

SampleMacro(Param1 => 10, Param2 => 20);
SampleMacro(Param2 => 20, Param1 => 10);

A function having only one parameter may omit the name of the parameter. For example:

Sleep(Duration => 10us);

Can also be written as:

40 of 79 | Language Reference

G
en

er
at

o
r

U
se

r
G

u
id

e Sleep(10us);

Parameters are optional when they have a default value. If the parameter is not specified in

the call, the default value is used. The example below defines a macro with two parameters.
TParam1 T is mandatory and TParam2 T has a default value of 0. Since TParam2 T is not specified in the

call, the value 0 will be used as default.

void SampleFunction(Param1, Param2 = 0)
{
 Sleep(Param 1 + Param2);
}

void Main()
{
 SampleFunction(Param1 => 10us);
}

4.7 Enumerations Declarations

Enumerations can be used to give names to known values. The example below shows a script

that defines several error codes.

enum ErrorCode
{
 NoError = 0,
 Timeout = 1,
 SequenceMismatch = 2,
 Unspecified = 3
}

The example below shows a script that declares a unique number for each state of a state

machine.

enum StateMachine
{
 Stopped,
 Paused,
 Running,
 Unspecified
}

void main()
{
 var currentState = GetMachineState();

 if(currentState == StateMachine.Unspecified)
 {
 currentState = StateMachine.Stopped;
 }

 SetMachineState(currentState);
}

 Language Reference | 41 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

4.8 Namespace Declarations

Namespaces can be used to isolate some portions of code to avoid name collision in big scripts.

The example below shows a script that declares a namespace and then uses functions defined

by this namespace.

namespace UtilityFunctions
{
 void WaitSpecialEvent(Event, Timeout)
 { /* ... */ }

 void GenerateSpecialEvent(Event, Param = 0)
 {/* ... */ }
}

void WaitAndGenerate(Event)
{
 UtilityFunctions.WaitSpecialEvent(Event, 50ms);
 UtilityFunctions.GenerateSpecialEvent(Event);
}

using UtilityFunctions;

void main()
{
 WaitSpecialEvent(Event, 200ms);
 WaitAndGenerate(Event);
}

The example below shows a script that declares two namespaces, each with a function that has

the same name.

namespace TimingFunctions
{
 void WaitAnswer(Timeout) { /* ... */ }
}

namespace ProtocolFunctions
{
 void WaitAnswer(AnswerId) { /* ... */ }
}

void main()
{
 TimingFunctions.WaitAnswer(400ms);
 ProtocolFunctions.WaitAnswer(Handshake);
}

4.9 Inline bytes

Inline data can be specified between square brackets. This inline data can be copied to a

memory buffer or used with instructions' parameters. Inline data is the most efficient way of

providing data to a parameter because it does not require going through the buffer memory.

42 of 79 | Language Reference

G
en

er
at

o
r

U
se

r
G

u
id

e Buffer[0 to 3] = [0, 1, 2, 3];

CopyMemory(
 Src => [0x00, 0x00],
 Dst => Buffer[200 for ..]);

4.10 Buffers

The hardware contains a buffer of 8192 bytes available for memory comparison and copy
operations. It can be accessed with the TBuffer T keyword for reading as well as for writing.

Buffer[0 to 3] = [0, 1, 2, 3];
Buffer[0 for 4] = CounterB;
CounterA = Buffer[10 for 4];

The last received packet can be accessed with the TUsb30LastRxPacket T keyword.

TUsb30astRxPacket T is read only.

Buffer[2 to CounterB] = Usb30LastRxPacket[2 to CounterB];
CounterC = Usb30LastRxPacket[5];

4.11 Counters

Counters are useful for example to count errors, special conditions, etc. Several counters are
available in the generator, namely TCounterA T to TCounterH T. The value of the counters is

indicated in the Registers window.

The example below shows a script that repetitively sends a pulse on the Trigger Out connector

and waits for a rising edge on the input Trigger In. If the rising edge is not detected within 500
milliseconds the script increments TCounterA T.

repeat(1000)
{
 GenerateTriggerOut(
 Mode => PulseHigh);

 WaitTriggerIn(
 Condition => RisingEdge,
 Timeout => 500ms);

 if(TimeoutOccurred)
 {
 // Keep the error count in CounterA
 CounterA++;
 }
}

 Language Reference | 43 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

4.12 Timers

Timers are useful for example to measure or generate precise timing sequences. Several

timers are available in the generator. Timers can be started, stopped or modified. It is possible

to wait until a timer reaches a specified value or to change the current value of a timer.

The example below shows a script that measure the duration of a trigger pulse and generates

one that lasts three times this duration.

Timer0 = 0;
Timer1 = 0;

// Wait a rising edge on the input
WaitTriggerIn(Condition => RisingEdge);

// Start Timer0, force trigger output high
StartTimer(0);
GenerateTriggerOut(Mode => ForceHigh);

// Wait a falling edge on the input
WaitTriggerIn(Condition => FallingEdge);

// Stop Timer0. It contains now the duration of the input trigger pulse.
StopTimer(0);

// Start Timer1 with a target value of two times Timer0.
StartTimer(1);
WaitTimer(
 Index => 1,
 TargetValue => Timer0 * 2,
 TimingRespect => Hard);

// Force trigger output low
GenerateTriggerOut(Mode => ForceLow);

4.13 Ref Keyword

A ref is an abstraction between the Buffer, the TUsb30LastRxPacket T and Inline bytes. It enables

writing functions that will accept both Buffer and Inline data without the need of writing the

code twice.

When a ref contains inline data all computations must occur at compile time. For example it is

possible doing computations by using constants, but it is not possible using runtime registers or

counters.

void MyOperation(in data, in value)
{
 data[0 for ..] = value;
}

void main()
{
 // Case 1: we take a ref on the Buffer and copy CounterA in it
 ref ref1 = Buffer[0 for 4];
 MyOperation(ref1, CounterA);

44 of 79 | Language Reference

G
en

er
at

o
r

U
se

r
G

u
id

e // Case 2: same, but we copy inline data
 ref ref2 = Buffer[0 for 4];
 MyOperation(ref2, [1,2,3,4]);

 // Case 3: we declare a ref on inline data and copy a constant
 // in it using our function
 ref ref3 = InlineBuffer;
 MyOperation(ref3, [1,2,3,4]);

 // Case 4: we try the same but with a counter.
 // It will not work because it is not compile time.
 ref ref4 = InlineBuffer;
 MyOperation(ref3, CounterA); // ERROR: not compile time
}

4.14 Stop Keyword

The Tstop T keyword stops the execution of the generator. This is useful for example to stop the

generator when a required condition is not met.

WaitTriggerIn(
 Condition => FallingEdge,
 Timeout => 100ms);

if(TimeoutOccurred)
{
 // Condition not met: stop execution
 stop;
}

4.15 Breakpoint Keyword

The Tbreakpoint T keyword breaks the execution of the generator. The execution can be resumed

by the user from the breakpoint.

WaitTriggerIn(
 Condition => FallingEdge,
 Timeout => 100ms);

if(TimeoutOccurred)
{
 // Condition not met: break execution
 breakpoint;
}

4.16 If, If Else, and If Else If Statements

The Tif T, T TTif else T, T TandT TTif else if T statements executes instructions conditionally depending

on a boolean condition. Conditions are described in section 4.23, Conditional Expressions.

 Language Reference | 45 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

The example below shows a script incrementing TCounterA T if the button is pressed, and

TCounterB T otherwise. When TCounterA T reaches T10 T, TCounterB T is reset to T0 T.

WaitButton(
 Index => 0,
 Timeout => 0ms,
 Condition => HighLevel);

if(MatchOccurred)
{
 CounterA++;
}
else
{
 CounterB++;
}

if(CounterA >= 10)
{
 CounterB = 0;
}

4.17 Switch Statement

The Tswitch T statement executes instructions conditionally depending on the value of the

specified variable.

The example below shows a script incrementing TCounterA T if the value of the variable is 0,

increments TCounterB T if the value is 1 and resets both to zero in other cases.

switch(CounterC)
{
 case 0:
 CounterA++;
 break;

 case 1:
 CounterB++;
 break;

 default:
 CounterA = 0;
 CounterB = 0;
 break;
}

4.18 Repeat Statement

The Trepeat T statement executes instructions the specified count of times. A Trepeat T statement

can be stopped with the Texit T keyword.

46 of 79 | Language Reference

G
en

er
at

o
r

U
se

r
G

u
id

e The example below shows a script that pulses high the state of the Trigger Out connector for

200 milliseconds every second. It does this 10 times.

repeat(10)
{
 GenerateTriggerOut(Mode => ForceHigh);
 Sleep(200ms);
 GenerateTriggerOut(Mode => ForceLow);
 Sleep(800ms);
}

4.19 While Statement

The Twhile T statement executes instructions as long as a specified condition is true. The

condition is checked before the instruction is executed. A Twhile T statement can be stopped with

the Texit T keyword.

The example below shows a script that toggles the state of the Trigger Out connector every 200

milliseconds until the Trigger In connector presents a high logic level.

while(true)
{
 GenerateTriggerOut(
 Mode => Toggle);

 WaitTriggerIn(
 Condition => HighLevel,
 Timeout => 200ms);

 if(MatchOccurre)
 {
 exit;
 }
}

4.20 Do While Statement

The Tdo TT TTwhile T statement executes instructions as long as a specified condition is Ttrue T. The

condition is checked after the instruction is executed. A Twhile T statement can be stopped with

the Texit T keyword.

 Language Reference | 47 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

The example below shows a script that generates a pulse on the Trigger Out connector until the

Trigger In connectors presents a high logic level.

do
{
 GenerateTriggerOut(
 Mode => PulseHigh);

 WaitTriggerIn(
 Condition => LowLevel,
 Timeout => 0);
}
while(MatchOccurred);

4.21 For Statement

The Tfor T statement executes instructions in a loop a certain number of times. A Tfor T statement

can be stopped with the Texit T keyword.

The example below shows a script that generates 20 pulses on the Trigger Out connector.

for(var i=0; i<20; i++)
{
 GenerateTriggerOut(Mode => PulseHigh);
}

4.22 Mathematical Expressions

The Ellisys script language supports the following mathematical operators:

T +, -, *, /, %, &, |, ^, >> T and T<< T.

The examples below show how to use these operators and how to combine them. In all these

examples, a must be a variable; b and c can be variables or a literals.

The following example assigns the value 20 to a:

a = 20;

The following example assigns the value 0xAB12 (43,794 in decimal) to a:

a = 0xAB12;

The following example adds the value of b to the value of c and assigns the result to a:

a = b + c;

48 of 79 | Language Reference

G
en

er
at

o
r

U
se

r
G

u
id

e The following example subtracts the value of c from the value of b and assigns the result to a:

a = b - c;

The following example multiplies the value of b with the value of c and assigns the result to a:

a = b * c;

The following example divides the value of b by the value of c and assigns the result to a:

a = b / c;

The following example divides the value of b with the value of c and assigns the rest of the

integer division to a:

a = b % c;

The following example performs a mathematical AND operation between the value of b and the

value of c and assigns the result to a:

a = b & c;

The following example performs a mathematical OR operation between the value of b and the

value of c and assigns the result to a:

a = b | c;

The following example performs a mathematical XOR operation between the value of b and the

value of c and assigns the result to a:

a = b ^ c;

The following example performs a right shift operation between the value of b and the value of

c and assigns the result to a:

a = b >> c;

The following example performs a left shift operation between the value of b and the value of c

and assigns the result to a:

a = b << c;

 Language Reference | 49 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

The following example demonstrates how to combine expressions to produce more complex

results:

a = ((b & 0x0F) * 12) >> (c + 1);

4.23 Conditional Expressions

The hardware flags that can be tested are TMatchOccurred T and TTimeoutOccured T. These two

flags are set by instructions that wait specific conditions.

Conditional expressions can be used as condition of execution or termination with several
statements, including Tif T, Twhile T and Tdo while T.

The following example executes the specified code if a equals b:

if(a == b) { /* insert code here */ }

The following example executes the specified code if a is different from b:

if(a != b) { /* insert code here */ }

The following example executes the specified code if a is greater than b:

if(a > b) { /* insert code here */ }

The following example executes the specified code if a is greater than or equal to b:

if(a >= b) { /* insert code here */ }

The following example executes the specified code if a is less than b:

if(a < b) { /* insert code here */ }

The following example executes the specified code if a is less than or equal to b:

if(a <= b) { /* insert code here */ }

50 of 79 | Hardware Instructions Set Reference

G
en

er
at

o
r

U
se

r
G

u
id

e 5. Hardware Instructions Set Reference

5.1 Introduction

The Ellisys generator contains a set of instructions implemented in hardware. These hardware

instructions are then integrated into higher level functions in order to achieve a complex task.

The higher lever functions are then grouped into libraries and supplied in full source code so it is

easy to understand the behavior and alter it if needed. Only the hardware instructions are fully

documented here, the higher level functions being supplied in source code.

Hardware instructions and functions have exactly the same syntax so it may not be easy to

distinguish between both. Hardware instructions are listed in this chapter. All other functions

are then just a group of several instructions to achieve a more complex task.

5.2 ConfigureGenerator

The TConfigureGenerator T instruction applies various commonly used parameters to a script,

and must be called at the start of the script. This instruction can be called later in a script in

order to change the settings of a given parameter. All parameters in this instruction are

optional. If a given parameter is not defined, the value is not changed.

Example

ConfigureGenerator(
 in mode => GeneratorMode.Host,
 in rxScramblerBypassed => false,
 in rx8b10bBypassed => false,
 in rxLanePolarity => LanePolarity.Normal,
 in txEnableTransceivers => false,
 in txScramblerBypassed => false,
 in tx8b10bBypassed => false,
 in txLanePolarity => LanePolarity.Normal,
 in txAutoComputeCrcs => true,
 in txAutoGenerateSkip => true);

Parameter List

Mode

Description Specifies the operating mode of the generator.

Range
TGeneratorMode.Disabled TorT

GeneratorMode.Host or

GeneratorMode.Device or
GeneratorMode.Hub.

Example Disabled configures the generator to not send traffic.

Host configures the generator to send traffic on the downstream port.

Device configures the generator to send traffic on the upstream port.

Hub configures the generator to send data on both ports.

 Hardware Instructions Set Reference | 51 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

rxScramblerBypassed

Description Specifies whether the traffic received by the generator will be
descrambled or not descrambled.

Range Boolean (True or False).

Example False will result in descrambling of received traffic.

True will result in no descrambling of received traffic.

rx8b10bBypassed

Description Specifies whether the traffic received by the generator will go through
the 8b/10 decoder or not.

Note This is an advanced parameter and should only be set to True for
specific testing.

Range Boolean (True or False).

Example False will result in decoding of received traffic.

True will result in no decoding of received traffic.

rxLanePolarity

Description Specifies whether the receiver will reverse the polarity of the incoming
wires or not.

Range LanePolarity.Normal or LanePolarity.Inverted.

Example Normal will result in the receiver not reversing the polarity.

Inverted will result in the receiver reversing the incoming wires.

txEnableTransceivers

Description Specifies whether the transmitter will be enabled or disabled.

Range Boolean (True or False).

Example True will enable the transmitter, which will then transmit D0.0
symbols continuously by default, or other symbols when specified.
False will disable the transmitter, which will drive the TX lines with
electrical idle.

52 of 79 | Hardware Instructions Set Reference

G
en

er
at

o
r

U
se

r
G

u
id

e txScramblerBypassed

Description Specifies whether the traffic sent by the generator will be scrambled
or not scrambled.

Range Boolean (True or False).

Example False will result in transmission of scrambled symbols.

True will result in transmission of non-scrambled symbols.

tx8b10bBypassed

Description Specifies whether the traffic sent by the generator will go through the
8b/10b encoder.

Note This is an advanced parameter and should only be set to True for
specific testing.

Range Boolean (True or False).

Example False will result in transmission of encoded 10b symbols.

True will result in transmission of raw 10b symbols.

txLanePolarity

Description Specifies whether the traffic sent by the generator will be polarity-
reversed or normal polarity.

Range LanePolarity.Normal or LanePolarity.Inverted.

Example Normal will result in the transmitter not reversing the polarity.

Inverted will result in the transmitter reversing the outcoming wires.

txAutoComputeCrcs

Description Specifies whether packet CRCs (Header, LCW and Data) will be
automatically computed by the generator hardware or sent as
specified by the script.

Note The default auto CRCs computation can be overridden in the
Usb30PushPacket instruction.

Default
TTrue T.

Example True will result in the generator automatically computing CRC values.

False will result in the generator sending the CRC value specified.

 Hardware Instructions Set Reference | 53 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

txAutoGenerateSkip

Description Specifies whether the generator will send Skip ordered sets
automatically as required by the specification.

Note If turned on, skips will be inserted between TSEQ. This parameter
should be set to False before sending out TSEQ if it is not the desired
behavior.

Range Boolean (True or False).

Example True will result in the generator automatically sending Skips.

False will result in the generator not sending Skips automatically.
Skips can be though inserted manually.

5.3 ConfigureLink

The ConfigureLink instruction configures automated link layer hardware handling to packets

received or sent by the generator.

The automatic link layer handling permits the user to greatly simplify the development of

complex scripts. All link layers aspects such as link acknowledges (Lgood_N, Lbad), link credits

(Lcrd_X), Header Sequence Numbers, etc. are then automatically handled by the generator

hardware and the script can focus on higher protocol layers.

Example

ConfigureLink(
 in Port => DownstreamPort,
 in txAutoHandleLinkAck => true,
 in txAutoHandleLinkCredit => true,
 in txAutoComputeHeaderSeqNum => true);

// Bring link up to U0
// ...

// This will send out automatically the Link Advertisement
ConfigureLink(
 in Port => DownstreamPort,
 in rxAutoSendLinkAck => true,
 in rxAutoSendLinkCredit => true);

Parameters

Port

Description Specifies the port to be configured.

Range
TUpstreamPort, DownstreamPort, BothPorts T

Default
TBothPorts T

54 of 79 | Hardware Instructions Set Reference

G
en

er
at

o
r

U
se

r
G

u
id

e rxAutoSendLinkAck

Description Configures the generator to automatically send link acknowledges
(Lgood_N, Lbad) on reception of header packets.

Range Boolean (True or False)

Default False

rxAutoSendLinkCredit

Description Configures the generator to automatically send link credits (Lcrd_X)
on reception of packets.

Note If turned on, the Lcrd_X will be sent out when the packet is handled in
the script by the Usb30WaitPacket instruction.

Range Boolean (True or False)

Default False

rxAutoSendLinkPolling

Description Configures the generator to automatically send link pollings (LUP or
LDN depending on the destination port) as required.

Range Boolean (True or False)

Default False

txAutoHandleLinkAck

Description Configures the generator to automatically handle link acknowledges
(Lgood_N, Lbad) on transmission of Header Packets.

Note If turned on, the generator will wait for the link acknowledge after
transmission of a packet with TUsb30PushPacket / Usb30CommitData T.
If Lbad is received, the generator will automatically issue a Lretry and
retransmit the Header Packet.

Range Boolean (True or False)

Default
TFalse T

 Hardware Instructions Set Reference | 55 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

txAutoHandleLinkCredit

Description Configures the generator to automatically handle link credits (Lcrd_X)
on transmission of Header Packets.

Note If turned on, the generator will keep track of the Remote Rx Header
Buffer Credit. If the script is sending data faster than the remote port
can accept, packets transmissions will be paused waiting for new
available credits.

Range Boolean (True or False)

Default
TTrue T

txAutoComputeHeaderSeqNumber

Description Configures the generator to automatically compute header sequence
numbers within the link control word of transmitted header packets.

Note If turned on, the header sequence number specified in header packets
is not relevant and will be overwritten by the generator.

Range Boolean (True or False)

Default
TTrue T.

txAutoHandleItp

Description Configures the generator to automatically handle ITPs. These packets
will be then no more available in the RX FIFO.

Note This function is especially useful for upstream ports. The user script is
then independent of ITPs and can focus on useful packets.

Range Boolean (True or False)

Default
TFalse T.

txAutoHandleLmp

Description Configures the generator to automatically handle LMPs. These
packets will be then no more available in the RX FIFO.

Note This function is especially useful for upstream ports. The user script is
then independent of LMPs and can focus on useful packets.

Range Boolean (True or False)

Default
TTrue T.

56 of 79 | Hardware Instructions Set Reference

G
en

er
at

o
r

U
se

r
G

u
id

e 5.4 Usb30DetectRxTerminations

The Usb30DetectRxTerminations instruction determines whether a receiver is present on the

far-end of the link with respect to the generator’s transmitters, either upstream or downstream.

Example

// Wait Remote-Port Terminations
repeat
{
 Usb30DetectRxTerminations();

 if(MatchOccurred)
 {
 // Term detected, proceed to next step
 exit;
 }

 Sleep(6ms);
}

// Next LTSSM steps...

Parameter List

Port

Description Specifies on which port the Receiver Detection should be done.

Range
TUpstreamPort, DownstreamPort, DefaultPort, BothPorts T

Default
TDefaultPort T

Note
TDefaultPort T will select the port depending on the generator mode.
In Device mode the Upstream port will be selected, while in Host
mode the downstream port will be selected.

5.5 Usb30PushRawData

The Usb30PushRawData instruction commits raw data symbols (any K or D type) into the TX

FIFO of the generator. The data can then be committed to be transmitted by using the
TUsb30CommitData T instruction.

This instruction can be used to transmit simple ordered sets such as TSEQ, TS1, TS2, SKP,

BRST, BERC, BCNT, etc, but also any signature composed of any K or D symbol.

Example

Usb30PushRawData(
 Port => UpstreamPort,
 RawData => [COM, COM, COM, COM, 0, 0, D10.2, D10.2, D10.2, D10.2,
 D10.2, D10.2, D10.2, D10.2, D10.2, D10.2],
 Count => 32);

Usb30CommitData(); // Data will be transmitted after this

 Hardware Instructions Set Reference | 57 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

Parameter List

Port

Description Specifies the port on which data will be pushed.

Range
TUpstreamPort, DownstreamPort, DefaultPort, BothPorts T

Default
TDefaultPort T

Example
TDefaultPort T will select the port depending on the generator mode.
In Device mode the Upstream port will be selected, while in Host
mode the downstream port will be selected.

RawData

Description Raw data to be sent.

Type Inline bytes

Default No default value; this parameter is mandatory.

Count

Description Specifies how many times the specified raw data must be repeated.

Range 0 to 4,294,967,295

Default 1

5.6 Usb30PushLinkCommand

The Usb30PushLinkCommand instruction commits a link command into the TX FIFO of the

generator. The link command can then be committed to be transmitted by using the
TUsb30CommitData T instruction.

Example

Usb30PushLinkCommand(
 Port => UpstreamPort,
 RawData => [0x01, 0x02],
 ComputeCrc => true);

Usb30CommitData(); // Data will be transmitted after this

58 of 79 | Hardware Instructions Set Reference

G
en

er
at

o
r

U
se

r
G

u
id

e Parameter List

Port

Description Specifies the port on which data will be pushed.

Range
TUpstreamPort, DownstreamPort, DefaultPort, BothPorts T

Default
TDefaultPort T

Example
TDefaultPort T will select the port depending on the generator mode.
In Device mode the Upstream port will be selected, while in Host
mode the downstream port will be selected.

RawData

Description Raw data of the 16-bit link command link command word to be sent.

 Note If the CRC-5 is computed by the generator, the specified CRC-5 value
is not relevant and will be overwritten.

Type Inline bytes or Buffer

Default No default value; this parameter is mandatory.

Example [0x01, 0x02] to use these bytes for the instruction.

Buffer[0 for 2] to use bytes from the user buffer.

ComputeCrc

Description Specifies if the CRC should be computed automatically by the
hardware instead of using the specified value.

Type Boolean (True or False)

Default
TTrue T

Example True to replace the specified CRC bytes with the computed CRC.

False to leave the specified CRC bytes as is.

5.7 Usb30PushPacket

The Usb30PushPacket instruction commits a packet into the TX FIFO of the generator. The

packet can then be committed to be transmitted by using the TUsb30CommitData T instruction.

Any kind of packet can be transmitted by using this instruction:

 Link Management Packets (LMP)

 Transaction Packets (TP)

 Data Packets (DP)

 Isochronous Timestamp Packets (ITP)

 Hardware Instructions Set Reference | 59 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

 But also any invalid or malformed packet

A RawData length of 16 bytes will send a single Header Packet; additional bytes specified will be

sent in a succeeding data packet payload (DPP).

Example

Usb30PushPacket(
 Port => UpstreamPort,
 RawData => [0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x21, 0x00,
 0x00, 0x00, 0x00, 0x00, 0xFB, 0x3C, 0x01, 0xE8
],
 ComputeHeaderCrc => true,
 ComputeLcwCrc => true,
 ComputeDataCrc => true);

Usb30CommitData(); // Data will be transmitted after this

Parameter List

Port

Description Specifies the port on which data will be pushed.

Range
TUpstreamPort, DownstreamPort, DefaultPort, BothPorts T

Default
TDefaultPort T

Example
TDefaultPort T will select the port depending on the generator mode.
In Device mode the Upstream port will be selected, while in Host
mode the downstream port will be selected.

RawData

Description Raw data of the packet to be sent.

Type Inline bytes or Buffer

Default No default value; this parameter is mandatory.

Example [0x01, 0x22, 0xFF] to use these bytes for the instruction.

Buffer[0 for 16] to use bytes from the user buffer.

60 of 79 | Hardware Instructions Set Reference

G
en

er
at

o
r

U
se

r
G

u
id

e ComputeHeaderCrc

Description Specifies if the header CRC-16 should be computed automatically by
the hardware instead of using the specified value.

Type Boolean (True or False)

Default
TTrue T

Example True to replace the specified CRC bytes with the computed CRC.

False to leave the specified CRC bytes as is.

ComputeLcwCrc

Description Specifies if the link control word CRC-5 should be computed
automatically by the hardware instead of using the specified value.

Type Boolean (True or False)

Default
TTrue T

Example True to replace the specified CRC bytes with the computed CRC.

False to leave the specified CRC bytes as is.

ComputeDataCrc

Description Specifies if the data packet CRC-32 should be computed automatically
by the hardware instead of using the specified value.

Type Boolean (True or False)

Default
TTrue T

Example True to replace the specified CRC bytes with the computed CRC.

False to leave the specified CRC bytes as is.

5.8 Usb30CommitData

The Usb30CommitData instruction commits data previously pushed into the TX buffer to be

transmitted on the wires.

Example

Usb30CommitData();

 Hardware Instructions Set Reference | 61 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

Parameter List

Port

Description Specifies the port on which data will be pushed.

Range
TUpstreamPort, DownstreamPort, DefaultPort, BothPorts T

Default
TDefaultPort T

Example
TDefaultPort T will select the port depending on the generator mode.
In Device mode the Upstream port will be selected, while in Host
mode the downstream port will be selected.

5.9 Usb30WaitOrderedSet

The Usb30WaitOrderedSet instruction waits for an ordered set matching the criteria specified.

Example

repeat
{
 Usb30WaitOrderedSet(
 Port => UpstreamPort,
 WaitOrderedSetTseq => true,
 WaitOrderedSetTs1 => true,
 WaitOrderedSetTs2 => false,
 WaitOrderedSetBrst => false,
 WaitOrderedSetBerc => false,
 WaitOrderedSetBcnt => false,
 WaitOrderedSetLinkCmd => false,
 Timeout => 500ms);

 if(MatchOccurred)
 {
 // OK we got either a TSEQ or TS1, proceed to next step
 exit;
 }
}

Parameter List

Port

Description Specifies the port on which data will be waited.

Range
TUpstreamPort, DownstreamPort, DefaultPort T

Default
TDefaultPort T

Example
TDefault T will select the port depending on the generator mode. In
Device mode the Upstream port will be selected, while in Host mode
the downstream port will be selected.

62 of 79 | Hardware Instructions Set Reference

G
en

er
at

o
r

U
se

r
G

u
id

e WaitOrderedSetTseq

Description Specifies if a TSEQ ordered set will match.

Type Boolean (True or False)

Default
TTrue T

WaitOrderedSetTs1

Description Specifies if a TS1 ordered set will match.

Type Boolean (True or False)

Default
TTrue T

WaitOrderedSetTs2

Description Specifies if a TS2 ordered set will match.

Type Boolean (True or False)

Default
TTrue T

WaitOrderedSetBrst

Description Specifies if a BRST ordered set will match.

Type Boolean (True or False)

Default
TTrue T

WaitOrderedSetBerc

Description Specifies if a BERC ordered set will match.

Type Boolean (True or False)

Default
TTrue T

WaitOrderedSetBcnt

Description Specifies if a BCNT ordered set will match.

Type Boolean (True or False)

Default
TTrue T

 Hardware Instructions Set Reference | 63 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

Timeout

Description Timeout after which the instruction is aborted.

Type Time expressed in seconds.

Range 0 to 34.36 seconds with a precision of 8 nanoseconds.

Default No default value; this parameter is mandatory.

Example 1.32ms means 1,320 microseconds

10ns will be floored down to 8 nanoseconds.

5.10 Usb30WaitPacket

The TUsb30WaitPacket T Instruction waits for a USB 3.0 packet for further processing.

Example

void WaitPacketType(in packetType)
{
 repeat
 {
 Usb30WaitPacket(
 Port => UpstreamPort,
 Timeout => 500ms);

 if(MatchOccurred)
 {
 if(Usb30LastRxPacketType == packetType)
 {
 // OK we got a packet of the expected type
 exit;
 }
 }
 }
}

Parameter List

Port

Description Specifies the port on which data will be waited.

Range
TUpstreamPort, DownstreamPort, DefaultPort T

Default
TDefaultPort T

Example
TDefaultPort T will select the port depending on the generator mode.
In Device mode the Upstream port will be selected, while in Host
mode the downstream port will be selected.

64 of 79 | Hardware Instructions Set Reference

G
en

er
at

o
r

U
se

r
G

u
id

e Timeout

Description Timeout after which the instruction is aborted.

Type Time expressed in seconds.

Range 0 to 34.36 seconds with a precision of 8 nanoseconds.

Default No default value; this parameter is mandatory.

Example 1.32ms means 1,320 microseconds

10ns will be floored down to 8 nanoseconds.

5.11 HostConfigureBusPowerSource

The HostConfigureBusPowerSource instruction configures the bus power source when the

generator is configured as host. The generator has the ability to supply the power from an

internal source. The voltage of this internal source can then be further configured by using the
THostConfigureInternalVbusLevel T instruction.

Example

HostConfigureBusPowerSource(HostPowerSource.Internal);

Parameter List

PowerSource

Description Selects the power source.

Range
THostPowerSource.Off T(no power is supplied, Vbus is at 0V)T

HostPowerSource.Internal (power is supplied by the generator)

HostPowerSource.External (power is supplied from the outside)

Default HostPowerSource.Off

5.12 HostConfigureInternalVbusLevel

The HostConfigureInternalVbusLevel instruction configures the voltage supplied by the

internal power source. The HostConfigureBusPowerSource instruction must be used to select

internal power source.

 Hardware Instructions Set Reference | 65 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

Example

HostConfigureBusPowerSource(HostPowerSource.Internal);

var vbusLevel = HostMaxInternalVbusLevel;

while(vbusLevel >= HostMinInternalVbusLevel)
{
 HostConfigureInternalVbusLevel(vbusLevel);
 Sleep(1s);
 vbusLevel -= 020; // Decrease of 0.20V each iteration
}

Parameter List

Level

Description Sets the Vbus level.

Type Value representing 10 mV by unit.

Range 356 (3.56 V) to 543 (5.43 V).

Example 400 means 4.00 V
500 means 5.00 V

5.13 Sleep

The Sleep instruction waits a precise duration which can be specified in units of time (seconds,

milliseconds, microseconds and nanoseconds).

Example

Sleep(Duration => 1.5ms);
Sleep(80ns);

Parameter List

Duration

Description Amount of time to wait.

Type Time expressed in seconds.

Range 0 to 34.36 seconds with a precision of 8 nanoseconds.

Default No default value; this parameter is mandatory.

Example 1.32ms means 1,320 microseconds

10ns will be floored down to 8 nanoseconds.

66 of 79 | Hardware Instructions Set Reference

G
en

er
at

o
r

U
se

r
G

u
id

e 5.14 StartCountdown

The StartCountdown instruction starts a countdown timer in the generator. Three countdown

timers can run simultaneously. It is then possible waiting a countdown timer reached zero by
using the WaitCountdownReached instruction.

Example

StartCountdown (Index => 0, Duration => 65538us);
StartCountdown (65538us);

Parameter List

Index

Description Index of the countdown timer.

Range 0 to 2.

Default 0

Duration

Description Amount of time to wait.

Type Time expressed in seconds.

Range 0 to 34.36 seconds with a precision of 8 nanoseconds.

Default No default value; this parameter is mandatory.

Example 1.32ms means 1,320 microseconds

10ns will be floored down to 8 nanoseconds.

5.15 WaitCountdownReached

The WaitCountdownReached instruction waits for the countdown timer to reach zero.

Example

WaitCountdownReached(
 Index => 0,
 Timeout => 500ms,
 TimingRespect => Hard);

 Hardware Instructions Set Reference | 67 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

Parameter List

Index

Description Index of the countdown timer.

Range 0 to 2.

Default 0

Timeout

Description Timeout after which the instruction is aborted.

Type Time expressed in seconds.

Range 0 to 34.36 seconds with a precision of 8 nanoseconds.

Default No default value; this parameter is mandatory.

Example 1.32ms means 1,320 microseconds

10ns will be floored down to 8 nanoseconds.

TimingRespect

Description Specifies if the processor breaks if the countdown value was already
reached at the time the wait was called.

Range Soft or Hard

Default Soft

Example Soft to continue even if the countdown value was already reached.

Hard to break script execution if the countdown value was exceeded.

This value (Hard) helps detecting timing errors in scripts.

5.16 ConfigureTimer

The ConfigureTimer instruction configures specific aspects of the timer instructions.

Example

Timer0 = 0;
ConfigureTimer(Index => 0, Prescaler => 1.024ms);
StartTimer(Index => 0);

const DataTransferSize = 512 * 1024 * 1024; // 512 MB
DoDataTransfer(DataTransferSize);

StopTimer(Index => 0);

var readThroughputInKBps = DataTransferSize / Timer0;

68 of 79 | Hardware Instructions Set Reference

G
en

er
at

o
r

U
se

r
G

u
id

e Parameter List

Index

Description Specifies the index of the timer to configure.

Type 0 to 2.

Default No default value; this parameter is mandatory.

Prescaler

Description Specifies how many clock counts are needed to increment the timer
value. This is helpful for extending the range of a timer if the default
range is not enough.

Range 0 to 4294967295.

Default No default value; this parameter is mandatory.

Example 1 will cause one clock count to increment the specified timer.
10 will result in a timer range of 0 to 343.6 seconds (instead of 34.36)
with a precision of 80 ns (instead of 8 ns).

Overflow

Description Specifies the value at which the timer will restart at zero.

Range 0 to 0xFFFFFFFF.

Default No default value; this parameter is mandatory.

Example 000000FF will use force a restart after 256 clock counts.

5.17 StartTimer

The StartTimer instruction starts the specified timer.

Example

StartTimer (1);

 Hardware Instructions Set Reference | 69 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

Parameter List

Index

Description Specifies the index of the timer to start.

Type 0 to 2.

Default No default value; this parameter is mandatory.

5.18 StopTimer

The StopTimer instruction stops the specified timer.

Example

StopTimer (1);

Parameter List

Index

Description Specifies the index of the timer to stop.

Type 0 to 2.

Default No default value; this parameter is mandatory.

5.19 WaitTimer

The WaitTimer instruction waits until the specified timer reaches the specified value.

Example

WaitTimer(
 Index => 1,
 TargetValue => 60s);

Parameter List

Index

Description Specifies the index of the timer to wait on.

Type 0 to 2.

Default No default value; this parameter is mandatory.

70 of 79 | Hardware Instructions Set Reference

G
en

er
at

o
r

U
se

r
G

u
id

e TargetValue

Description Specifies the target value to wait on.

Type 0 to 4,294,967,295.

Default No default value; this parameter is mandatory.

Example 10500 will match when the specified timer reaches value 10,500.

Timeout

Description Timeout after which the instruction is aborted.

Type Time expressed in seconds.

Range 0 to 34.36 seconds with a precision of 8 nanoseconds.

Default No default value; this parameter is mandatory.

Example 1.32ms means 1,320 microseconds

10ns will be floored down to 8 nanoseconds.

TimingRespect

Description Specifies if the processor breaks if the countdown value was already
reached at the time the wait was called.

Range Soft or Hard

Default Soft

Example Soft to continue even if the countdown value was already reached.

Hard to break script execution if the countdown value was exceeded.

This value (Hard) helps detecting timing errors in scripts.

5.20 CopyMemory

The CopyMemory instruction copies bytes from a location of the user buffer to another location.

Example

CopyMemory(
 Src => [0x00, 0x00],
 Dst => Buffer[200 for ..]);

CopyMemory(
 Src => Buffer[0 for 2],
 Dst => Buffer[200 for ..]);

CopyMemory(
 Src => Usb30LastRxPacket[16 for 128],
 Dst => Buffer[0 for ..]);

 Hardware Instructions Set Reference | 71 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

Parameter List

Src

Description The source data to copy to the destination

Type Inline bytes (max 8192 bytes) or Buffer or Usb30LastRxPacket

Default No default value; this parameter is mandatory.

Example [0x00, 0x09, 0x00, 0xE0, 0x00] to copy these bytes.

Buffer[0 for 10] to copy bytes from the user buffer.

Usb30LastRxBuffer[0 for 16] to copy the header packet.

Dst

Description The destination where the source will be copied.

Type Buffer

Default No default value; this parameter is mandatory.

Example Buffer[100 for ..] to copy the source to the offset 100 of the user
buffer with the length specified in the source.

5.21 WaitTriggerIn

The WaitTriggerIn instruction waits on the trigger input SMA connector on the rear of the unit.

Example

WaitTriggerIn(
 Condition => RisingEdge,
 Timeout => 5s);

Parameter List

Condition

Description Specifies the trigger condition

Range RisingEdge, FallingEdge, HighLevel, LowLevel

Default No default value; this parameter is mandatory.

Example RisingEdge waits on a rising edge condition.

HighLevel waits on a high level (logic high or '1') condition.

72 of 79 | Hardware Instructions Set Reference

G
en

er
at

o
r

U
se

r
G

u
id

e Timeout

Description Timeout after which the instruction is aborted.

Type Time expressed in seconds.

Range 0 to 34.36 seconds with a precision of 8 nanoseconds.

Default No default value; this parameter is mandatory.

Example 1.32ms means 1,320 microseconds

10ns will be floored down to 8 nanoseconds.

5.22 GenerateTriggerOut

The GenerateTriggerOut instruction generates a condition on the Trigger Out SMA connector

located on the rear of the unit.

Example

GenerateTriggerOut(
 Mode => PulseHigh);

Parameter List

Mode

Description Specifies the trigger mode.

Range PulseHigh, PulseLow, ForceHigh, ForceLow, Toggle

Default No default value; this parameter is mandatory.

Example PulseHigh generates a positive pulse on the output.

ForceLow forces a low-level (logic low or '0') on the output.

Toggle inverts the current level of the output.

 Special Registers | 73 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

6. Special Registers

Special Registers can be used to manage the progression of a script by examining or monitoring

the content of these registers.

6.1 Usb30NextTxHeaderSeqNum

This register stores the Header Sequence Number that will be transmitted in the next Header

Packet LCW when the Header Sequence Number is computed automatically by the hardware.
The txAutoComputeHeaderSeqNum parameter of the ConfigLink instruction must be set to true

for this purpose.

This register is incremented to one for each successfully transmitted packet. This register can

be written to reset the Header Sequence Number after a reset, or to create a sequence number

violation.

Example

ConfigureLink(
 in txAutoComputeHeaderSeqNum => true);

Usb30NextTxHeaderSeqNum = 0;

Usb30SendPacket(// HSN = 0
 [0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x21, 0x00,
 0x00, 0x00, 0x00, 0x00, 0xFB, 0x3C, 0x01, 0xE8]);

Usb30SendPacket(// HSN = 1
 [0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x21, 0x00,
 0x00, 0x00, 0x00, 0x00, 0xFB, 0x3C, 0x01, 0xE8]);

Usb30SendPacket(// HSN = 2
 [0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x21, 0x00,
 0x00, 0x00, 0x00, 0x00, 0xFB, 0x3C, 0x01, 0xE8]);

Usb30NextTxHeaderSeqNum++;

Usb30SendPacket(// HSN = 4
 [0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x21, 0x00,
 0x00, 0x00, 0x00, 0x00, 0xFB, 0x3C, 0x01, 0xE8]);

6.2 Usb30LastRxPacketType

This register contains the packet type field extracted from the last received packet.

74 of 79 | Special Registers

G
en

er
at

o
r

U
se

r
G

u
id

e Example

void WaitPacketType(in packetType)
{
 repeat
 {
 Usb30WaitPacket(
 Port => UpstreamPort,
 Timeout => 500ms);

 if(MatchOccurred)
 {
 if(Usb30LastRxPacketType == packetType)
 {
 // OK we got a packet of the expected type
 exit;
 }
 }
 }
}

6.3 Usb30LastRxPacketSubType

This register contains the packet sub-type field extracted from the last received packet. If the

field is not applicable for the received packet, then the field is reset to 0.

Example

void WaitPacketType(in packetType, in packetSubType)
{
 repeat
 {
 Usb30WaitPacket(
 Port => UpstreamPort,
 Timeout => 500ms);

 if(MatchOccurred)
 {
 if(Usb30LastRxPacketType == packetType &&
 Usb30LastRxPacketSubType == packetSubType)
 {
 // OK we got a packet of the expected type and sub-type
 exit;
 }
 }
 }
}

6.4 Usb30LastRxPacketDevAddr

This register contains the device address field extracted from the last received packet. If the

field is not applicable for the received packet, then the field is reset to 0.

 Special Registers | 75 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

Example

void WaitPacketFromAddr(in devAddr)
{
 repeat
 {
 Usb30WaitPacket(
 Port => UpstreamPort,
 Timeout => 500ms);

 if(MatchOccurred)
 {
 if(Usb30LastRxPacketDevAddr == devAddr)
 {
 // OK we got a packet from the expected device
 exit;
 }
 }
 }
}

6.5 Usb30LastRxPacketEpNum

This register contains the endpoint number field extracted from the last received packet. If the

field is not applicable for the received packet, then the field is reset to 0.

Example

void WaitPacketFromEndpoint(in devAddr, in epNum)
{
 repeat
 {
 Usb30WaitPacket(
 Port => UpstreamPort,
 Timeout => 500ms);

 if(MatchOccurred)
 {
 if(Usb30LastRxPacketDevAddr == devAddr &&
 Usb30LastRxPacketEpNum == epNum)
 {
 // OK we got a packet from the expected endpoint number
 exit;
 }
 }
 }
}

6.6 Usb30LastRxPacketNumP

This register contains the NumP (number of packets) field extracted from the last received

packet. If the field is not applicable for the received packet, then the field is reset to 0.

6.7 Usb30LastRxPacketPayloadLength

This register contains the length field extracted from the last received packet.

76 of 79 | Special Registers

G
en

er
at

o
r

U
se

r
G

u
id

e Example

WaitPacketType(Usb30PacketType.DataPacketHeader);

// Copy the last RX packet payload to the Buffer at offset 0
Buffer[0 for Usb30LastRxPacketPayloadLength] =
 Usb30LastRxPacket[16 for ..];

6.8 Usb30LastRxPacketParams

This register contains some bit fields extracted from the last received packet. This register is a

bit field formatted as follow:

 Bit 0: End of Burst

 Bit 1: Endpoint Direction

 Bit 2: Setup TP

 Bit 3: Retry Data Packet

The following constants are defined in the standard Ellisys include files for convenience:

const Usb30LastRxPacketParamsEndOfBurst = 0x00000001;
const Usb30LastRxPacketParamsEndpointDirection = 0x00000002;
const Usb30LastRxPacketParamsIsSetup = 0x00000004;
const Usb30LastRxPacketParamsRetryDataPacket = 0x00000008;

6.9 Usb30LastRxPacketErrors

This register contains the errors detected during the last packet reception. This register is a bit

field formatted as follow:

 Bit 0: Header Error. Any error in the HP only such as:

a. Not enough symbols (header aborted by another ordered set)

b. Unexpected symbol (such as K instead of D)

c. Symbol error (such as 10b/8b decoder error)

d. Header CRC-16 error

e. LCW CRC-5 error

 Bit 1: Packet Error. Any error in the whole packet including DPP such as:

f. Any HP error as described above

g. DPP not back-to-back of HP

h. Unexpected symbol (such as K instead of D)

 Special Registers | 77 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

 Bit 2: Type Error. Type field is unknown.

 Bit 3: Payload CRC-32 Error. The CRC-32 of the DPP is incorrect.

 Bit 4: Payload Length Mismatch. The length field and the actual DPP received

length are not equal.

The following constants are defined in the standard Ellisys include files for convenience:

const Usb30LastRxPacketErrorsHeaderError = 0x00000001;
const Usb30LastRxPacketErrorsPacketError = 0x00000002;
const Usb30LastRxPacketErrorsPacketTypeError = 0x00000004;
const Usb30LastRxPacketErrorsDataCrcError = 0x00000008;
const Usb30LastRxPacketErrorsLengthMismatch = 0x00000010;

Please note that when the link acknowledges are automatically sent by the generator (when the
rxAutoSendLinkAck of ConfigureLink is set to true), a packet cannot be received with the

Header Error bit set because a Lbad would be sent automatically and the HP would be

discarded.

6.10 Usb30NextLinkGoodIndex

This register indicates which index will be used for the next LGOOD. This register is

automatically incremented in the following cases:

 The index is incremented for each LGOOD sent after the reception of a valid header

packet when Usb30ConfigureLink(rxAutoSendLinkAck) is enabled.

 The index is incremented when sending a LGOOD manually by using the special register

Usb30ImmediateLinkCommand.

This register can be written to set the next LGOOD index to be sent at the desired value.

6.11 Usb30NextLinkCreditIndex

This register indicates which index will be used for the next LCRD. This register is automatically

incremented in the following cases:

 The index is incremented for each LCRD sent after the handling of a valid header packet

when Usb30ConfigureLink(rxAutoSendLinkCredit) is enabled.

 The index is incremented when sending a LCRD manually by using the special register

Usb30ImmediateLinkCommand.

This register can be written to set the next LCRD index to be sent at the desired value.

78 of 79 | Special Registers

G
en

er
at

o
r

U
se

r
G

u
id

e 6.12 Usb30ImmediateLinkCommand

This register enables sending link commands with no delay for managing link commands

manually. This register is a bit field and writing a one to a bit send out immediately the

corresponding link command. The link command is sent in priority independently of the TX

FIFO content. This is the main difference with the Usb30PushLinkCommand which goes through

the TX FIFO and is thus sent in sequence with the other TX FIFO items.

This register is formatted as follow:

 Bit 0: Send LGOOD_N. A LGOOD will be sent with the current index, and the index will

be then incremented by one.

 Bit 1: Send LCRD_X. A LCRD will be sent with the current credit index, and the credit

index will be then incremented by one.

 Bit 2: Send LDN/LUP.

 Bit 3: Send LBAD.

 Bit 4: Send LRTY.

The following constants are defined in the standard Ellisys include files for convenience:

const Usb30ImmediateLinkCommandNextLgood = 0x00000001;
const Usb30ImmediateLinkCommandNextLcredit = 0x00000002;
const Usb30ImmediateLinkCommandPolling = 0x00000004;
const Usb30ImmediateLinkCommandBad = 0x00000008;
const Usb30ImmediateLinkCommandRetry = 0x00000010;

Several bits can be written to 1 at the same time, for example for sending LGOOD/LCREDIT in a

unique write.

Example

void Usb30LinkAdvertisement()
{
 Usb30NextLinkGoodIndex = 7;
 Usb30NextLinkCreditIndex = 0;
 Usb30ImmediateLinkCommand = Usb30ImmediateLinkCommandNextLcredit |
 Usb30ImmediateLinkCommandNextLgood;
 Usb30ImmediateLinkCommand = Usb30ImmediateLinkCommandNextLcredit;
 Usb30ImmediateLinkCommand = Usb30ImmediateLinkCommandNextLcredit;
 Usb30ImmediateLinkCommand = Usb30ImmediateLinkCommandNextLcredit;
}

6.13 Usb30OrderedSetCounterTseq

This register contains the count of consecutive TSEQ ordered sets received by the generator.

 Special Registers | 79 of 79

U
S
B
 E

xp
lo

re
r

2
8
0

6.14 Usb30OrderedSetCounterTs1

This register contains the count of consecutive TS1 ordered sets received by the generator.

6.15 Usb30OrderedSetCounterTs2

This register contains the count of consecutive TS2 ordered sets received by the generator.

6.16 Usb30OrderedSetTsLinkFunc

This register contains link functionality field extracted from the last TS1 or TS2 ordered set

received by the generator.

	Generator Overview
	Introduction
	Main Features

	Installing the Application
	Software Prerequisites
	Software Installation
	Front Panel Overview
	Upstream Connector
	Downstream Connector
	Power LED
	Operating LED
	Trigger LED
	Link LED
	Receive LED
	Transmit LED

	Back Panel Overview
	Power
	Computer
	Trigger OUT
	Trigger IN
	Auxiliary Equipment
	Inter-equipment

	Connecting to the Control Computer
	Follow the steps below to install the USB driver:

	User Interface Reference
	Organizing Panes
	To open or display a pane:
	To close a pane:
	To hide a pane:
	To move a pane or a window:

	Main Toolbar
	Main Menu
	Opening a File
	To open a file:

	Saving a File
	To save a file:
	To save a file with a new name:

	Printing a File
	To print a file:

	Editing a Script
	To insert a code snippet:

	Advanced Editing Features
	To mark or unmark line modifications:
	To highlight the current line:
	To display the column 80 guide:
	To comment a selection in the script:
	To uncomment a selection in the script:
	To change text case:

	Searching
	To search text:
	To replace text:

	Working with Bookmarks
	To toggle a bookmark:
	To enable a bookmark:
	To move to the next or previous bookmark:
	To remove all bookmarks:

	Working with Breakpoints
	To insert a breakpoint:
	To remove all breakpoints:

	Compiling a Script
	To find an error in a compiled script:

	Running a Script
	To select a generator:
	To run a script:
	To break or pause a script:
	To stop a script:
	To restart a script:
	To step a script:

	Working with Registers
	To select a register format:

	Language Reference
	Comments
	Include Files
	Constants Declaration
	Variables Declaration
	Functions Declaration
	Function Calls
	Enumerations Declarations
	Namespace Declarations
	Inline bytes
	Buffers
	Counters
	Timers
	Ref Keyword
	Stop Keyword
	Breakpoint Keyword
	If, If Else, and If Else If Statements
	Switch Statement
	Repeat Statement
	While Statement
	Do While Statement
	For Statement
	Mathematical Expressions
	Conditional Expressions

	Hardware Instructions Set Reference
	Introduction
	ConfigureGenerator
	Example
	Parameter List

	ConfigureLink
	Example
	Parameters

	Usb30DetectRxTerminations
	Example
	Parameter List

	Usb30PushRawData
	Example
	Parameter List

	Usb30PushLinkCommand
	Example
	Parameter List

	Usb30PushPacket
	Example
	Parameter List

	Usb30CommitData
	Example
	Parameter List

	Usb30WaitOrderedSet
	Example
	Parameter List

	Usb30WaitPacket
	Example
	Parameter List

	HostConfigureBusPowerSource
	Example
	Parameter List

	HostConfigureInternalVbusLevel
	Example
	Parameter List

	Sleep
	Example
	Parameter List

	StartCountdown
	Example
	Parameter List

	WaitCountdownReached
	Example
	Parameter List

	ConfigureTimer
	Example
	Parameter List

	StartTimer
	Example
	Parameter List

	StopTimer
	Example
	Parameter List

	WaitTimer
	Example
	Parameter List

	CopyMemory
	Example
	Parameter List

	WaitTriggerIn
	Example
	Parameter List

	GenerateTriggerOut
	Example
	Parameter List

	Special Registers
	Usb30NextTxHeaderSeqNum
	Example

	Usb30LastRxPacketType
	Example

	Usb30LastRxPacketSubType
	Example

	Usb30LastRxPacketDevAddr
	Example

	Usb30LastRxPacketEpNum
	Example

	Usb30LastRxPacketNumP
	Usb30LastRxPacketPayloadLength
	Example

	Usb30LastRxPacketParams
	Usb30LastRxPacketErrors
	Usb30NextLinkGoodIndex
	Usb30NextLinkCreditIndex
	Usb30ImmediateLinkCommand
	Example

	Usb30OrderedSetCounterTseq
	Usb30OrderedSetCounterTs1
	Usb30OrderedSetCounterTs2
	Usb30OrderedSetTsLinkFunc

