

Bluetooth[®] Seminar Series

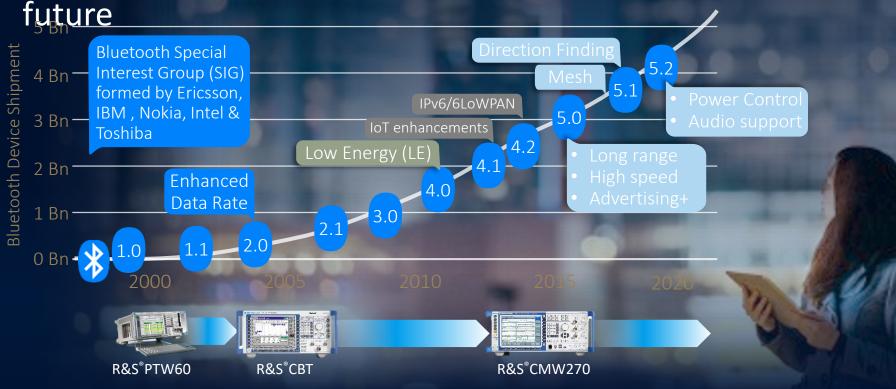
Tools, Techniques, and Trends

Bluetooth LE RF Testing Why Not Over the Air?

Ute Philipp | Product Manager | Rohde & Schwarz

A Larsen & Toubro Group Company

ROHDE & SCHWARZ Make ideas real

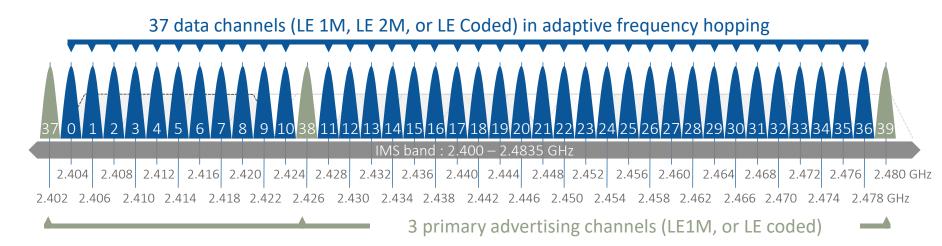


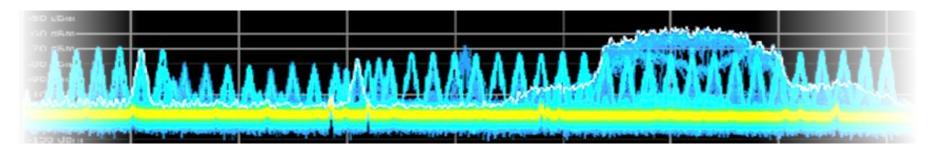
Rohde & Schwarz

We have supported the ecosystem with dedicated test solutions over the last twenty years and will do so in the

Rohde & Schwarz

Bluetooth[®] Low Energy - physical layer overview


	LE 1M PHY	LE 2M PHY	LE Coded PHY w/ S=2 w/ S=8	
Modulation	GFSK ∆F: 250 kHz	GFSK ΔF: 500 kHz	GFSK ΔF: 250 kHz	GFSK ΔF: 250 kHz
Symbolrate	1 MS/s	2 MS/s	1 MS/s	1 MS/s
Bitrate	1 Mbit/s	2 Mbit/s	0.5 Mbit/s	0.125 Mbit/s
Rx Sensitivity	≤ - 70 dBm	≤ - 70 dBm	≤ - 75 dBm	≤ - 82 dBm



Link Layer pack	et format for the LE uncod	ed PHYs				
Preamble 1 or 2 octets	PreambleAccess AddressPDUCRCCTE1 or 2 octets4 octets2 - 256 octets3 octets16 to 160 µs					

PDU – Packet Data Unit I CRC – Continuous Redundancy Check I CTE – Continuous Tone Extension

Bluetooth Low Energy – 2.4 GHz ISM spectrum use

Bluetooth[®] certification processes

- **RF/RF-PHY conformance**
- Protocol/profile conformance
- Profile Interoperability, etc.

Regulatory certification processes

• RF conformance

Product sample

- EMC certification
- Safety certification
- Application specific certification e.g. medical

Radio Frequency Physical Layer (RF PHY)

Bluetooth® Test Suite

• Revision: RF-PHY.TS.5.1.0

Revision Date: 2018-12-07

- Group Prepared By: BTI
- Feedback Email: <u>bti-main@bluetooth.org</u>

Abstrac

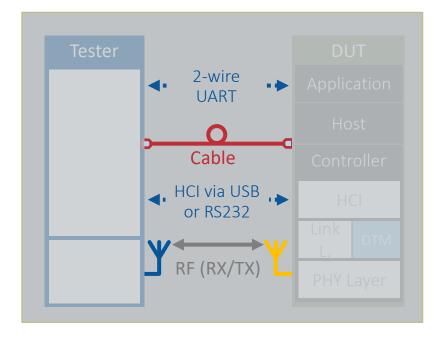
This document defines test structures and procedures for qualification testing of Bluetooth implementations of the Bluetooth Low Energy RF PHY.

Bluetooth SIG Proprietary and Confidential

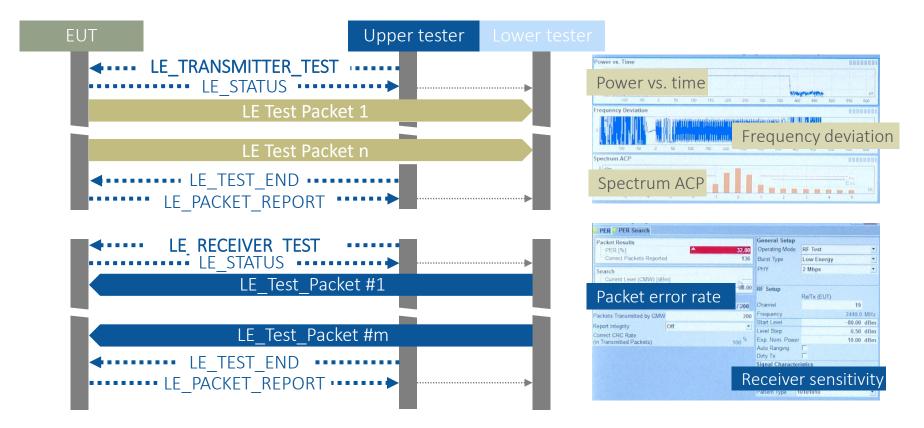
Bluetooth LE RF pre-qualification testing Test Cases

Test Cases up to Rel. 5.0

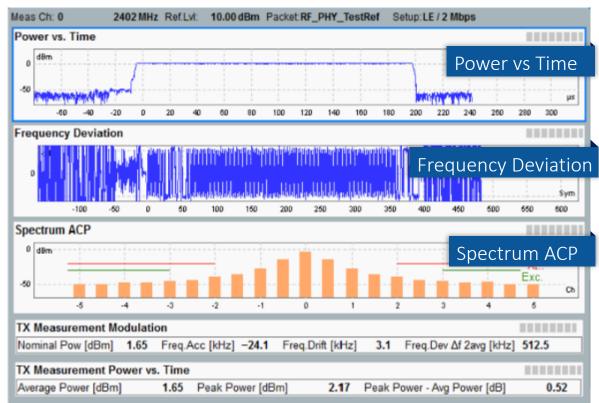
BT5	Tests / Requirements	1Ms/s	2Ms/s	1Ms/s, SMI	2Ms/s, SMI	1Ms/s, S=2	1Ms/s, S=8	1Ms/s, S=2, SMI	1Ms/s, S=8, SMI
	Output power	01							
TRM-LE	In band emission	03	08						
I NIVI-LE	Modulation charachteristics	05	10	09	11		13		
	Carrier frequency offset & drift	06	12				14		
	Receiver sensitivity	01	08	14	20	26	27	32	33
	C/I and Receiver sensitivity	03	09	15	21	28	29	34	35
RCV-LE	Blocking performance	04	10	16	22				
NOV-LL	Intermodulation performance	05	11	17	23				
	Maximum input signal level	06	12	18	24				
	PER Report Integrity	07	13	19	25	30	31	36	37


Blocking Tests

Test Cases Rel. 5.1


	Description		1 Ms/	s PHY	2 Ms/	s PHY
	Output Power	TRM/BV-	15		-	
	Carrier Frequency Offset and Drift with CTE	TRM/BV-	16		17	
TRM			2us Slot	1us Slot	2us Slot	1us Slot
	TX Power Stability; AoD Transmitter	TRM/PS/BV-	01	02	03	04
	Antenna Switching Integrity; AoD Transmitter	TRM/ASI/BV-	05	06	07	08
	IQ Samples Coherency; AoD Receiver	RCV/IQC/BV-	01	02	03	04
RCV	IQ Samples Coherency; AoA Receiver	RCV/IQC/BV-	05	-	06	-
	IQ Samples Dynamic Range; AoD Receiver	RCV/IQDR/BV-	07	08	09	10
	IQ Samples Dynamic Range; AoA Receiver	RCV/IQDR/BV-	11	-	12	-

Bluetooth[®] LE Direct Test Mode (DTM)


- DTM was introduced in Bluetooth[®] 4.0 specification together with Bluetooth[®] LE
- Standardized non-signaling test mode with defined test interface and uniform commands
- DTM allows fast testing on all channels
- DTM works independent from the tested radio interface, but needs a wired connection to the DUT

Direct Test Mode (DTM) use for RX and TX tests

Typical Bluetooth[®] LE RF Transmitter measurements

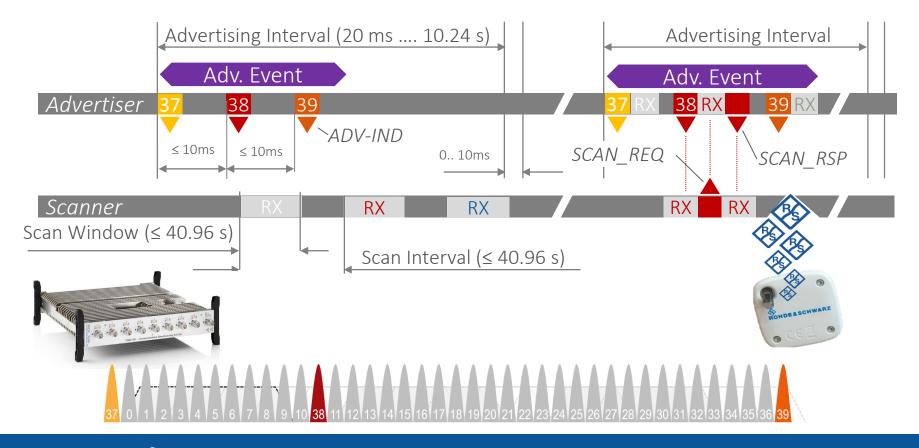
Typical Bluetooth[®] LE RF Receiver measurements

PER PER Search						
Packet Results PER [%] 0.53			General Setup Operating Mode	RF Test		/
Correct Packets Report	ad	1492	Burst Type	Low Energy		•
Packets Transmitted			PHY	Long Range		•
		1500 / 1500	Coding Scheme	S8		•
Packets Transmitted by CMW 1500			RF Setup			
Report Integrity	Off	•		Rx/Tx (EUT)		
Correct CRC Rate			Channel		19	
(in Transmitted Packets)		100 %	Frequency		2440.0	MHz
			Tx Level (CMW)		-82.00	dBm
			Exp. Nom. Powe	er 👘	10.00	dBm
			Auto Ranging	Γ		
			Dirty Tx	V		
			Signal Characte	eristics		
			Packet Type	RF_PHY_TestRef		1
			Payload Length		37 byte	(s)
			Pattern Type	PRBS9		-

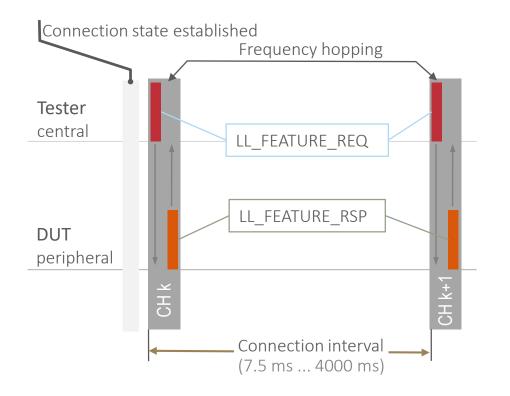
What we learned over the last years in using DTM

Works very well for pre-conformance and conformance testing, but ...

- test setups tend to become more complicated,
- sometimes it is hard to find a plug for the control cable,
- control cabling could influence the RF measurements


Can we simply unplug the control cable?

Use the **advertising** procedure to test on advertiser channels

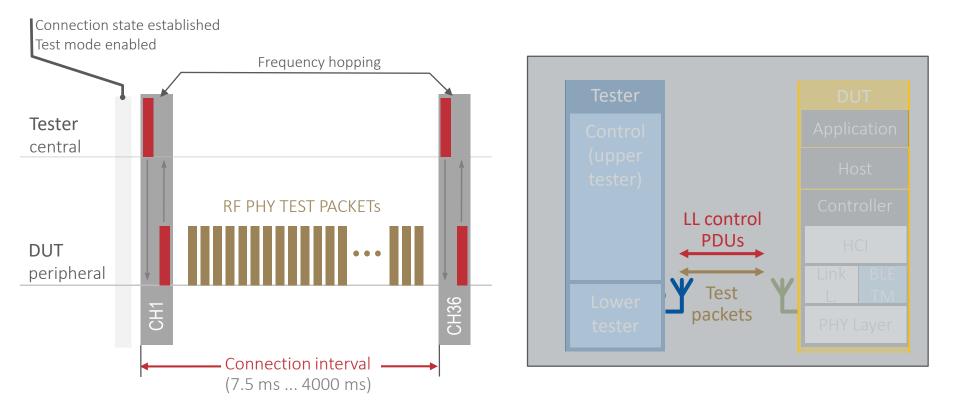

Perform measurements on data channels in **connected state**

Adapt direct test mode to a **radio-controlled** Bluetooth LE **test mode**

Use of advertising communication for functional testing

Bluetooth[®] LE Connected Mode

Allows testing of all data channels in frequency hopping sequence with the option to tests only data channels


Transceiver tests:

Tester sends Feature Request packets to DUT and DUT shall respond with Feature Response packets which can be used for related measurements.

Receiver Tests

Tester sends Feature Request packets to DUT with defined power and is looking for responses from the DUT to determine PER

World's first radio-controlled Bluetooth[®] LE Test Mode

Demo

Bluetooth LE Test Mode

Implementation Details

Bluetooth Low Energy feature Specification

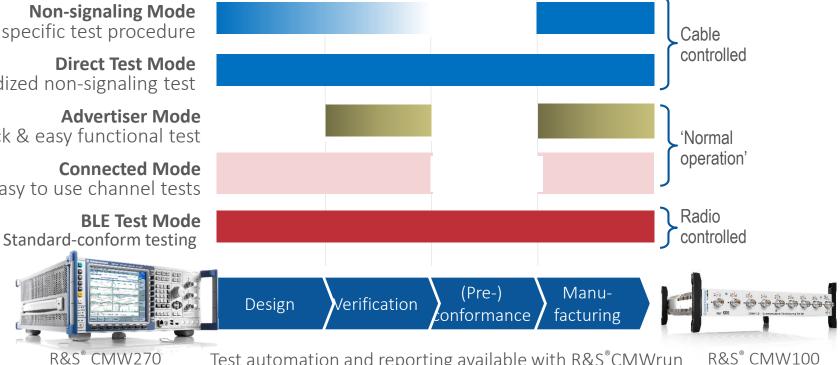
- All test cases within the BLE RF-PHY-TS Test Specification are possible
- RF-PHY-TS compliant Transmitter and Receiver Tests for EUTs without wired control interface
- Requires changes to the EUT stack to facilitate this test mode
 - 5 new HCI commands and 4 new HCI events
 - 4 new bits in the LE Event Mask
 - 8 new LL Control PDUs (4 pairs of Request/Response)

Bluetooth LE RF test methods

	BLE Advertiser testing Mode	BLE Signaling Connected mode	DTM & BLE Test Mode	
	DOD INTO		2000000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Test Strategy	Based on Scan Request/ Response packets	Feature request/response packets are measured only	RF Test PHY packets are measured	
RF tests	on advertiser channels	on data channels	on all channels	
Meas. speed	depends on DUT advertiser interval	depends on DUT connection interval	<pre>very fast</pre>	
Pre-conf. tests	Not possible	Not possible	Possible	
	CMW-KD611	CMW-KS601/720	CMW-KS601/KS720 + KS611/KS721	

What is the difference?

	Direct Test Mode	BLE Test Mode (BLE-TM)
Test setup	8 Complicated due to cabling	😊 Easy to use
Test control	DUT control via cable	😊 Radio link layer controlled
Test coverage	☺ Test of all BLE channels	😊 Test of all BLE channels
Conformance tests	All defined test cases	All defined test cases
Prerequisite	⊖ DTM support of the DUT	BLE-TM support of DUT
Add. measurements	n/a	😊 Bit error rate (BER)


Several possibilities to test and verify Bluetooth[®] Low Energy

Non-signaling Mode Vendor specific test procedure

Direct Test Mode Standardized non-signaling test

> **Advertiser Mode** Quick & easy functional test

> > **Connected Mode** Easy to use channel tests

Test automation and reporting available with R&S[®]CMWrun R&S[®] CMW100

Company Logo Here

ROHDE&SCHWARZ

Make ideas real

Thank you!

Questions?

Contact Information

Name: Ute Philipp Email: ute.philipp@rohde-schwarz.com Phone: +49 170 79 15 852 Web: www.rohde-schwarz.com

Mindtree A Larsen & Toubro Group Company

The Bluetooth® word mark and logos are registered trademarks owned by the Bluetooth SIG, Inc. and any use of such marks by Ellisys is under license Other trademarks and trade names are those of their respective owners.